
Gunicorn Documentation
Release 20.0.4

Benoit Chesneau

Nov 26, 2019

Contents

1 Features 3

2 Contents 5
2.1 Installation . 5
2.2 Running Gunicorn . 7
2.3 Configuration Overview . 10
2.4 Settings . 11
2.5 Instrumentation . 30
2.6 Deploying Gunicorn . 31
2.7 Signal Handling . 38
2.8 Custom Application . 40
2.9 Design . 41
2.10 FAQ . 43
2.11 Community . 46
2.12 Changelog . 47

Index 75

i

ii

Gunicorn Documentation, Release 20.0.4

Website http://gunicorn.org

Source code https://github.com/benoitc/gunicorn

Issue tracker https://github.com/benoitc/gunicorn/issues

IRC #gunicorn on Freenode

Usage questions https://github.com/benoitc/gunicorn/issues

Gunicorn ‘Green Unicorn’ is a Python WSGI HTTP Server for UNIX. It’s a pre-fork worker model ported from Ruby’s
Unicorn project. The Gunicorn server is broadly compatible with various web frameworks, simply implemented, light
on server resources, and fairly speedy.

Contents 1

http://gunicorn.org
https://github.com/benoitc/gunicorn
https://github.com/benoitc/gunicorn/issues
https://github.com/benoitc/gunicorn/issues

Gunicorn Documentation, Release 20.0.4

2 Contents

CHAPTER 1

Features

• Natively supports WSGI, Django, and Paster

• Automatic worker process management

• Simple Python configuration

• Multiple worker configurations

• Various server hooks for extensibility

• Compatible with Python 3.x >= 3.5

3

Gunicorn Documentation, Release 20.0.4

4 Chapter 1. Features

CHAPTER 2

Contents

2.1 Installation

Requirements Python 3.x >= 3.4

To install the latest released version of Gunicorn:

$ pip install gunicorn

2.1.1 From Source

You can install Gunicorn from source just as you would install any other Python package:

$ pip install git+https://github.com/benoitc/gunicorn.git

This will allow you to keep up to date with development on GitHub:

$ pip install -U git+https://github.com/benoitc/gunicorn.git

2.1.2 Async Workers

You may also want to install Eventlet or Gevent if you expect that your application code may need to pause for
extended periods of time during request processing. Check out the design docs for more information on when you’ll
want to consider one of the alternate worker types.

$ pip install greenlet # Required for both
$ pip install eventlet # For eventlet workers
$ pip install gunicorn[eventlet] # Or, using extra
$ pip install gevent # For gevent workers
$ pip install gunicorn[gevent] # Or, using extra

5

http://eventlet.net
http://www.gevent.org/
design.html

Gunicorn Documentation, Release 20.0.4

Note: Both require greenlet, which should get installed automatically. If its installation fails, you probably need
to install the Python headers. These headers are available in most package managers. On Ubuntu the package name
for apt-get is python-dev.

Gevent also requires that libevent 1.4.x or 2.0.4 is installed. This could be a more recent version than what is
available in your package manager. If Gevent fails to build even with libevent installed, this is the most likely reason.

2.1.3 Extra Packages

Some Gunicorn options require additional packages. You can use the [extra] syntax to install these at the same
time as Gunicorn.

Most extra packages are needed for alternate worker types. See the design docs for more information on when you’ll
want to consider an alternate worker type.

• gunicorn[eventlet] - Eventlet-based greenlets workers

• gunicorn[gevent] - Gevent-based greenlets workers

• gunicorn[gthread] - Threaded workers

• gunicorn[tornado] - Tornado-based workers, not recommended

If you are running more than one instance of Gunicorn, the proc_name setting will help distinguish between them in
tools like ps and top.

• gunicorn[setproctitle] - Enables setting the process name

Multiple extras can be combined, like pip install gunicorn[gevent,setproctitle].

2.1.4 Debian GNU/Linux

If you are using Debian GNU/Linux it is recommended that you use system packages to install Gunicorn except maybe
when you want to use different versions of Gunicorn with virtualenv. This has a number of advantages:

• Zero-effort installation: Automatically starts multiple Gunicorn instances based on configurations defined in
/etc/gunicorn.d.

• Sensible default locations for logs (/var/log/gunicorn). Logs can be automatically rotated and com-
pressed using logrotate.

• Improved security: Can easily run each Gunicorn instance with a dedicated UNIX user/group.

• Sensible upgrade path: Upgrades to newer versions result in less downtime, handle conflicting changes in
configuration options, and can be quickly rolled back in case of incompatibility. The package can also be
purged entirely from the system in seconds.

stable (“stretch”)

The version of Gunicorn in the Debian “stable” distribution is 19.6.0 (June 2017). You can install it using:

$ sudo apt-get install gunicorn

You can also use the most recent version by using Debian Backports. First, copy the following line to your /etc/
apt/sources.list:

6 Chapter 2. Contents

http://www.gevent.org/
http://www.gevent.org/
http://libevent.org/
design.html
https://www.debian.org/
https://backports.debian.org/

Gunicorn Documentation, Release 20.0.4

deb http://ftp.debian.org/debian stretch-backports main

Then, update your local package lists:

$ sudo apt-get update

You can then install the latest version using:

$ sudo apt-get -t stretch-backports install gunicorn

oldstable (“jessie”)

The version of Gunicorn in the Debian “oldstable” distribution is 19.0 (June 2014). You can install it using:

$ sudo apt-get install gunicorn

You can also use the most recent version by using Debian Backports. First, copy the following line to your /etc/
apt/sources.list:

deb http://ftp.debian.org/debian jessie-backports main

Then, update your local package lists:

$ sudo apt-get update

You can then install the latest version using:

$ sudo apt-get -t jessie-backports install gunicorn

Testing (“buster”) / Unstable (“sid”)

“buster” and “sid” contain the latest released version of Gunicorn. You can install it in the usual way:

$ sudo apt-get install gunicorn

2.1.5 Ubuntu

Ubuntu 12.04 (trusty) or later contains the Gunicorn package by default so that you can install it in the usual way:

$ sudo apt-get update
$ sudo apt-get install gunicorn

2.2 Running Gunicorn

You can run Gunicorn by using commands or integrate with popular frameworks like Django, Pyramid, or TurboGears.
For deploying Gunicorn in production see Deploying Gunicorn.

2.2.1 Commands

After installing Gunicorn you will have access to the command line script gunicorn.

2.2. Running Gunicorn 7

https://www.debian.org/
https://backports.debian.org/
https://www.ubuntu.com/

Gunicorn Documentation, Release 20.0.4

gunicorn

Basic usage:

$ gunicorn [OPTIONS] APP_MODULE

Where APP_MODULE is of the pattern $(MODULE_NAME):$(VARIABLE_NAME). The module name can be a full
dotted path. The variable name refers to a WSGI callable that should be found in the specified module.

Example with the test app:

def app(environ, start_response):
"""Simplest possible application object"""
data = b'Hello, World!\n'
status = '200 OK'
response_headers = [

('Content-type', 'text/plain'),
('Content-Length', str(len(data)))

]
start_response(status, response_headers)
return iter([data])

You can now run the app with the following command:

.. code-block:: text

$ gunicorn –workers=2 test:app

The variable name can also be a function call. In that case the name will be imported from the module, then called to
get the application object. This is commonly referred to as the “application factory” pattern.

def create_app():
app = FrameworkApp()
...
return app

$ gunicorn --workers=2 'test:create_app()'

Positional and keyword arguments can also be passed, but it is recommended to load configuration from environment
variables rather than the command line.

Commonly Used Arguments

• -c CONFIG, --config=CONFIG - Specify a config file in the form $(PATH), file:$(PATH), or
python:$(MODULE_NAME).

• -b BIND, --bind=BIND - Specify a server socket to bind. Server sockets can be any of $(HOST),
$(HOST):$(PORT), fd://$(FD), or unix:$(PATH). An IP is a valid $(HOST).

• -w WORKERS, --workers=WORKERS - The number of worker processes. This number should generally
be between 2-4 workers per core in the server. Check the FAQ for ideas on tuning this parameter.

• -k WORKERCLASS, --worker-class=WORKERCLASS - The type of worker process to run. You’ll def-
initely want to read the production page for the implications of this parameter. You can set this to $(NAME)
where $(NAME) is one of sync, eventlet, gevent, tornado, gthread. sync is the default. See the
worker_class documentation for more information.

8 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

• -n APP_NAME, --name=APP_NAME - If setproctitle is installed you can adjust the name of Gunicorn pro-
cess as they appear in the process system table (which affects tools like ps and top).

Settings can be specified by using environment variable GUNICORN_CMD_ARGS.

See Configuration Overview and Settings for detailed usage.

2.2.2 Integration

Gunicorn also provides integration for Django and Paste Deploy applications.

Django

Gunicorn will look for a WSGI callable named application if not specified. So for a typical Django project,
invoking Gunicorn would look like:

$ gunicorn myproject.wsgi

Note: This requires that your project be on the Python path; the simplest way to ensure that is to run this command
from the same directory as your manage.py file.

You can use the –env option to set the path to load the settings. In case you need it you can also add your application
path to PYTHONPATH using the –pythonpath option:

$ gunicorn --env DJANGO_SETTINGS_MODULE=myproject.settings myproject.wsgi

Paste Deployment

Frameworks such as Pyramid and Turbogears are typically configured using Paste Deployment configuration files. If
you would like to use these files with Gunicorn, there are two approaches.

As a server runner, Gunicorn can serve your application using the commands from your framework, such as pserve
or gearbox. To use Gunicorn with these commands, specify it as a server in your configuration file:

[server:main]
use = egg:gunicorn#main
host = 127.0.0.1
port = 8080
workers = 3

This approach is the quickest way to get started with Gunicorn, but there are some limitations. Gunicorn will have no
control over how the application is loaded, so settings such as reload will have no effect and Gunicorn will be unable
to hot upgrade a running application. Using the daemon option may confuse your command line tool. Instead, use the
built-in support for these features provided by that tool. For example, run pserve --reload instead of specifying
reload = True in the server configuration block. For advanced configuration of Gunicorn, such as Server Hooks
specifying a Gunicorn configuration file using the config key is supported.

To use the full power of Gunicorn’s reloading and hot code upgrades, use the paste option to run your application
instead. When used this way, Gunicorn will use the application defined by the PasteDeploy configuration file, but
Gunicorn will not use any server configuration defined in the file. Instead, configure gunicorn.

For example:

2.2. Running Gunicorn 9

https://pypi.python.org/pypi/setproctitle
http://docs.gunicorn.org/en/latest/settings.html#raw-env
http://docs.gunicorn.org/en/latest/settings.html#pythonpath
http://docs.gunicorn.org/en/latest/settings.html#reload
http://docs.gunicorn.org/en/latest/settings.html#daemon
http://docs.gunicorn.org/en/latest/settings.html#server-hooks
http://docs.gunicorn.org/en/latest/settings.html#paste
http://docs.gunicorn.org/en/latest/configure.html

Gunicorn Documentation, Release 20.0.4

$ gunicorn --paste development.ini -b :8080 --chdir /path/to/project

Or use a different application:

$ gunicorn --paste development.ini#admin -b :8080 --chdir /path/to/project

With both approaches, Gunicorn will use any loggers section found in Paste Deployment configuration file, unless
instructed otherwise by specifying additional logging settings.

2.3 Configuration Overview

Gunicorn pulls configuration information from three distinct places.

The first place that Gunicorn will read configuration from is the framework specific configuration file. Currently this
only affects Paster applications.

The second source of configuration information is a configuration file that is optionally specified on the command line.
Anything specified in the Gunicorn config file will override any framework specific settings.

Lastly, the command line arguments used to invoke Gunicorn are the final place considered for configuration settings.
If an option is specified on the command line, this is the value that will be used.

Once again, in order of least to most authoritative:

1. Framework Settings

2. Configuration File

3. Command Line

Note: To check your configuration when using the command line or the configuration file you can run the following
command:

$ gunicorn --check-config APP_MODULE

It also allows you to know if your application can be launched.

2.3.1 Command Line

If an option is specified on the command line, it overrides all other values that may have been specified in the app
specific settings, or in the optional configuration file. Not all Gunicorn settings are available to be set from the
command line. To see the full list of command line settings you can do the usual:

$ gunicorn -h

There is also a --version flag available to the command line scripts that isn’t mentioned in the list of settings.

2.3.2 Configuration File

The configuration file should be a valid Python source file with a python extension (e.g. gunicorn.conf.py). It only
needs to be readable from the file system. More specifically, it does not have to be on the module path (sys.path,
PYTHONPATH). Any Python is valid. Just consider that this will be run every time you start Gunicorn (including
when you signal Gunicorn to reload).

10 Chapter 2. Contents

http://docs.gunicorn.org/en/latest/settings.html#logging

Gunicorn Documentation, Release 20.0.4

To set a parameter, just assign to it. There’s no special syntax. The values you provide will be used for the configuration
values.

For instance:

import multiprocessing

bind = "127.0.0.1:8000"
workers = multiprocessing.cpu_count() * 2 + 1

All the settings are mentioned in the settings list.

2.3.3 Framework Settings

Currently, only Paster applications have access to framework specific settings. If you have ideas for providing settings
to WSGI applications or pulling information from Django’s settings.py feel free to open an issue to let us know.

Paster Applications

In your INI file, you can specify to use Gunicorn as the server like such:

[server:main]
use = egg:gunicorn#main
host = 192.168.0.1
port = 80
workers = 2
proc_name = brim

Any parameters that Gunicorn knows about will automatically be inserted into the base configuration. Remember that
these will be overridden by the config file and/or the command line.

2.4 Settings

This is an exhaustive list of settings for Gunicorn. Some settings are only able to be set from a configuration file.
The setting name is what should be used in the configuration file. The command line arguments are listed as well for
reference on setting at the command line.

Note: Settings can be specified by using environment variable GUNICORN_CMD_ARGS. All available command line
arguments can be used. For example, to specify the bind address and number of workers:

$ GUNICORN_CMD_ARGS="--bind=127.0.0.1 --workers=3" gunicorn app:app

New in version 19.7.

2.4.1 Config File

config

• -c CONFIG, --config CONFIG

• None

2.4. Settings 11

https://github.com/benoitc/gunicorn/issues

Gunicorn Documentation, Release 20.0.4

The Gunicorn config file.

A string of the form PATH, file:PATH, or python:MODULE_NAME.

Only has an effect when specified on the command line or as part of an application specific configuration.

Changed in version 19.4: Loading the config from a Python module requires the python: prefix.

2.4.2 Debugging

reload

• --reload

• False

Restart workers when code changes.

This setting is intended for development. It will cause workers to be restarted whenever application code changes.

The reloader is incompatible with application preloading. When using a paste configuration be sure that the server
block does not import any application code or the reload will not work as designed.

The default behavior is to attempt inotify with a fallback to file system polling. Generally, inotify should be preferred
if available because it consumes less system resources.

Note: In order to use the inotify reloader, you must have the inotify package installed.

reload_engine

• --reload-engine STRING

• auto

The implementation that should be used to power reload.

Valid engines are:

• ‘auto’

• ‘poll’

• ‘inotify’ (requires inotify)

New in version 19.7.

reload_extra_files

• --reload-extra-file FILES

• []

Extends reload option to also watch and reload on additional files (e.g., templates, configurations, specifications, etc.).

New in version 19.8.

12 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

spew

• --spew

• False

Install a trace function that spews every line executed by the server.

This is the nuclear option.

check_config

• --check-config

• False

Check the configuration.

2.4.3 Logging

accesslog

• --access-logfile FILE

• None

The Access log file to write to.

'-' means log to stdout.

disable_redirect_access_to_syslog

• --disable-redirect-access-to-syslog

• False

Disable redirect access logs to syslog.

New in version 19.8.

access_log_format

• --access-logformat STRING

• %(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s"

The access log format.

2.4. Settings 13

Gunicorn Documentation, Release 20.0.4

Identifier Description
h remote address
l '-'
u user name
t date of the request
r status line (e.g. GET / HTTP/1.1)
m request method
U URL path without query string
q query string
H protocol
s status
B response length
b response length or '-' (CLF format)
f referer
a user agent
T request time in seconds
D request time in microseconds
L request time in decimal seconds
p process ID
{header}i request header
{header}o response header
{variable}e environment variable

Use lowercase for header and environment variable names, and put {...}x names inside %(...)s. For example:

%({x-forwarded-for}i)s

errorlog

• --error-logfile FILE, --log-file FILE

• -

The Error log file to write to.

Using '-' for FILE makes gunicorn log to stderr.

Changed in version 19.2: Log to stderr by default.

loglevel

• --log-level LEVEL

• info

The granularity of Error log outputs.

Valid level names are:

• debug

• info

• warning

• error

14 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

• critical

capture_output

• --capture-output

• False

Redirect stdout/stderr to specified file in errorlog.

New in version 19.6.

logger_class

• --logger-class STRING

• gunicorn.glogging.Logger

The logger you want to use to log events in Gunicorn.

The default class (gunicorn.glogging.Logger) handle most of normal usages in logging. It provides error and
access logging.

You can provide your own logger by giving Gunicorn a Python path to a subclass like gunicorn.glogging.
Logger.

logconfig

• --log-config FILE

• None

The log config file to use. Gunicorn uses the standard Python logging module’s Configuration file format.

logconfig_dict

• --log-config-dict

• {}

The log config dictionary to use, using the standard Python logging module’s dictionary configuration format. This
option takes precedence over the logconfig option, which uses the older file configuration format.

Format: https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

New in version 19.8.

syslog_addr

• --log-syslog-to SYSLOG_ADDR

• udp://localhost:514

Address to send syslog messages.

Address is a string of the form:

• unix://PATH#TYPE : for unix domain socket. TYPE can be stream for the stream driver or dgram for
the dgram driver. stream is the default.

2.4. Settings 15

https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

Gunicorn Documentation, Release 20.0.4

• udp://HOST:PORT : for UDP sockets

• tcp://HOST:PORT : for TCP sockets

syslog

• --log-syslog

• False

Send Gunicorn logs to syslog.

Changed in version 19.8: You can now disable sending access logs by using the disable_redirect_access_to_syslog
setting.

syslog_prefix

• --log-syslog-prefix SYSLOG_PREFIX

• None

Makes Gunicorn use the parameter as program-name in the syslog entries.

All entries will be prefixed by gunicorn.<prefix>. By default the program name is the name of the process.

syslog_facility

• --log-syslog-facility SYSLOG_FACILITY

• user

Syslog facility name

enable_stdio_inheritance

• -R, --enable-stdio-inheritance

• False

Enable stdio inheritance.

Enable inheritance for stdio file descriptors in daemon mode.

Note: To disable the Python stdout buffering, you can to set the user environment variable PYTHONUNBUFFERED .

statsd_host

• --statsd-host STATSD_ADDR

• None

host:port of the statsd server to log to.

New in version 19.1.

16 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

dogstatsd_tags

• --dogstatsd-tags DOGSTATSD_TAGS

• (empty string)

A comma-delimited list of datadog statsd (dogstatsd) tags to append to statsd metrics.

New in version 20.

statsd_prefix

• --statsd-prefix STATSD_PREFIX

• (empty string)

Prefix to use when emitting statsd metrics (a trailing . is added, if not provided).

New in version 19.2.

2.4.4 Process Naming

proc_name

• -n STRING, --name STRING

• None

A base to use with setproctitle for process naming.

This affects things like ps and top. If you’re going to be running more than one instance of Gunicorn you’ll probably
want to set a name to tell them apart. This requires that you install the setproctitle module.

If not set, the default_proc_name setting will be used.

default_proc_name

• gunicorn

Internal setting that is adjusted for each type of application.

2.4.5 SSL

keyfile

• --keyfile FILE

• None

SSL key file

2.4. Settings 17

Gunicorn Documentation, Release 20.0.4

certfile

• --certfile FILE

• None

SSL certificate file

ssl_version

• --ssl-version

• _SSLMethod.PROTOCOL_TLS

SSL version to use.

–ssl-
version

Description

SSLv3 SSLv3 is not-secure and is strongly discouraged.
SSLv23 Alias for TLS. Deprecated in Python 3.6, use TLS.
TLS Negotiate highest possible version between client/server. Can yield SSL. (Python 3.6+)
TLSv1 TLS 1.0
TLSv1_1 TLS 1.1 (Python 3.4+)
TLSv1_2 TLS 1.2 (Python 3.4+)
TLS_SERVER Auto-negotiate the highest protocol version like TLS, but only support server-side SSLSocket con-

nections. (Python 3.6+)

Changed in version 19.7: The default value has been changed from ssl.PROTOCOL_TLSv1 to ssl.
PROTOCOL_SSLv23.

Changed in version 20.0: This setting now accepts string names based on ssl.PROTOCOL_ constants.

cert_reqs

• --cert-reqs

• VerifyMode.CERT_NONE

Whether client certificate is required (see stdlib ssl module’s)

ca_certs

• --ca-certs FILE

• None

CA certificates file

suppress_ragged_eofs

• --suppress-ragged-eofs

• True

Suppress ragged EOFs (see stdlib ssl module’s)

18 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

do_handshake_on_connect

• --do-handshake-on-connect

• False

Whether to perform SSL handshake on socket connect (see stdlib ssl module’s)

ciphers

• --ciphers

• None

SSL Cipher suite to use, in the format of an OpenSSL cipher list.

By default we use the default cipher list from Python’s ssl module, which contains ciphers considered strong at the
time of each Python release.

As a recommended alternative, the Open Web App Security Project (OWASP) offers a vetted set of strong cipher
strings rated A+ to C-. OWASP provides details on user-agent compatibility at each security level.

See the OpenSSL Cipher List Format Documentation for details on the format of an OpenSSL cipher list.

2.4.6 Security

limit_request_line

• --limit-request-line INT

• 4094

The maximum size of HTTP request line in bytes.

This parameter is used to limit the allowed size of a client’s HTTP request-line. Since the request-line consists of the
HTTP method, URI, and protocol version, this directive places a restriction on the length of a request-URI allowed for
a request on the server. A server needs this value to be large enough to hold any of its resource names, including any
information that might be passed in the query part of a GET request. Value is a number from 0 (unlimited) to 8190.

This parameter can be used to prevent any DDOS attack.

limit_request_fields

• --limit-request-fields INT

• 100

Limit the number of HTTP headers fields in a request.

This parameter is used to limit the number of headers in a request to prevent DDOS attack. Used with the
limit_request_field_size it allows more safety. By default this value is 100 and can’t be larger than 32768.

limit_request_field_size

• --limit-request-field_size INT

• 8190

2.4. Settings 19

https://www.owasp.org/index.php/TLS_Cipher_String_Cheat_Sheet
https://www.owasp.org/index.php/TLS_Cipher_String_Cheat_Sheet
https://www.openssl.org/docs/manmaster/man1/ciphers.html#CIPHER-LIST-FORMAT

Gunicorn Documentation, Release 20.0.4

Limit the allowed size of an HTTP request header field.

Value is a positive number or 0. Setting it to 0 will allow unlimited header field sizes.

Warning: Setting this parameter to a very high or unlimited value can open up for DDOS attacks.

2.4.7 Server Hooks

on_starting

• def on_starting(server):
pass

Called just before the master process is initialized.

The callable needs to accept a single instance variable for the Arbiter.

on_reload

• def on_reload(server):
pass

Called to recycle workers during a reload via SIGHUP.

The callable needs to accept a single instance variable for the Arbiter.

when_ready

• def when_ready(server):
pass

Called just after the server is started.

The callable needs to accept a single instance variable for the Arbiter.

pre_fork

• def pre_fork(server, worker):
pass

Called just before a worker is forked.

The callable needs to accept two instance variables for the Arbiter and new Worker.

post_fork

• def post_fork(server, worker):
pass

Called just after a worker has been forked.

The callable needs to accept two instance variables for the Arbiter and new Worker.

20 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

post_worker_init

• def post_worker_init(worker):
pass

Called just after a worker has initialized the application.

The callable needs to accept one instance variable for the initialized Worker.

worker_int

• def worker_int(worker):
pass

Called just after a worker exited on SIGINT or SIGQUIT.

The callable needs to accept one instance variable for the initialized Worker.

worker_abort

• def worker_abort(worker):
pass

Called when a worker received the SIGABRT signal.

This call generally happens on timeout.

The callable needs to accept one instance variable for the initialized Worker.

pre_exec

• def pre_exec(server):
pass

Called just before a new master process is forked.

The callable needs to accept a single instance variable for the Arbiter.

pre_request

• def pre_request(worker, req):
worker.log.debug("%s %s" % (req.method, req.path))

Called just before a worker processes the request.

The callable needs to accept two instance variables for the Worker and the Request.

post_request

• def post_request(worker, req, environ, resp):
pass

2.4. Settings 21

Gunicorn Documentation, Release 20.0.4

Called after a worker processes the request.

The callable needs to accept two instance variables for the Worker and the Request.

child_exit

• def child_exit(server, worker):
pass

Called just after a worker has been exited, in the master process.

The callable needs to accept two instance variables for the Arbiter and the just-exited Worker.

New in version 19.7.

worker_exit

• def worker_exit(server, worker):
pass

Called just after a worker has been exited, in the worker process.

The callable needs to accept two instance variables for the Arbiter and the just-exited Worker.

nworkers_changed

• def nworkers_changed(server, new_value, old_value):
pass

Called just after num_workers has been changed.

The callable needs to accept an instance variable of the Arbiter and two integers of number of workers after and before
change.

If the number of workers is set for the first time, old_value would be None.

on_exit

• def on_exit(server):
pass

Called just before exiting Gunicorn.

The callable needs to accept a single instance variable for the Arbiter.

2.4.8 Server Mechanics

preload_app

• --preload

• False

22 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

Load application code before the worker processes are forked.

By preloading an application you can save some RAM resources as well as speed up server boot times. Although,
if you defer application loading to each worker process, you can reload your application code easily by restarting
workers.

sendfile

• --no-sendfile

• None

Disables the use of sendfile().

If not set, the value of the SENDFILE environment variable is used to enable or disable its usage.

New in version 19.2.

Changed in version 19.4: Swapped --sendfile with --no-sendfile to actually allow disabling.

Changed in version 19.6: added support for the SENDFILE environment variable

reuse_port

• --reuse-port

• False

Set the SO_REUSEPORT flag on the listening socket.

New in version 19.8.

chdir

• --chdir

• /home/docs/checkouts/readthedocs.org/user_builds/gunicorn-docs/checkouts/
20.0.4/docs/source

Chdir to specified directory before apps loading.

daemon

• -D, --daemon

• False

Daemonize the Gunicorn process.

Detaches the server from the controlling terminal and enters the background.

raw_env

• -e ENV, --env ENV

• []

Set environment variable (key=value).

Pass variables to the execution environment. Ex.:

2.4. Settings 23

Gunicorn Documentation, Release 20.0.4

$ gunicorn -b 127.0.0.1:8000 --env FOO=1 test:app

and test for the foo variable environment in your application.

pidfile

• -p FILE, --pid FILE

• None

A filename to use for the PID file.

If not set, no PID file will be written.

worker_tmp_dir

• --worker-tmp-dir DIR

• None

A directory to use for the worker heartbeat temporary file.

If not set, the default temporary directory will be used.

Note: The current heartbeat system involves calling os.fchmod on temporary file handlers and may block a worker
for arbitrary time if the directory is on a disk-backed filesystem.

See How do I avoid Gunicorn excessively blocking in os.fchmod? for more detailed information and a solution for
avoiding this problem.

user

• -u USER, --user USER

• 1005

Switch worker processes to run as this user.

A valid user id (as an integer) or the name of a user that can be retrieved with a call to pwd.getpwnam(value) or
None to not change the worker process user.

group

• -g GROUP, --group GROUP

• 205

Switch worker process to run as this group.

A valid group id (as an integer) or the name of a user that can be retrieved with a call to pwd.getgrnam(value)
or None to not change the worker processes group.

24 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

umask

• -m INT, --umask INT

• 0

A bit mask for the file mode on files written by Gunicorn.

Note that this affects unix socket permissions.

A valid value for the os.umask(mode) call or a string compatible with int(value, 0) (0 means Python
guesses the base, so values like 0, 0xFF, 0022 are valid for decimal, hex, and octal representations)

initgroups

• --initgroups

• False

If true, set the worker process’s group access list with all of the groups of which the specified username is a member,
plus the specified group id.

New in version 19.7.

tmp_upload_dir

• None

Directory to store temporary request data as they are read.

This may disappear in the near future.

This path should be writable by the process permissions set for Gunicorn workers. If not specified, Gunicorn will
choose a system generated temporary directory.

secure_scheme_headers

• {'X-FORWARDED-PROTOCOL': 'ssl', 'X-FORWARDED-PROTO': 'https',
'X-FORWARDED-SSL': 'on'}

A dictionary containing headers and values that the front-end proxy uses to indicate HTTPS requests. These tell
Gunicorn to set wsgi.url_scheme to https, so your application can tell that the request is secure.

The dictionary should map upper-case header names to exact string values. The value comparisons are case-sensitive,
unlike the header names, so make sure they’re exactly what your front-end proxy sends when handling HTTPS re-
quests.

It is important that your front-end proxy configuration ensures that the headers defined here can not be passed directly
from the client.

forwarded_allow_ips

• --forwarded-allow-ips STRING

• 127.0.0.1

2.4. Settings 25

Gunicorn Documentation, Release 20.0.4

Front-end’s IPs from which allowed to handle set secure headers. (comma separate).

Set to * to disable checking of Front-end IPs (useful for setups where you don’t know in advance the IP address of
Front-end, but you still trust the environment).

By default, the value of the FORWARDED_ALLOW_IPS environment variable. If it is not defined, the default is
"127.0.0.1".

pythonpath

• --pythonpath STRING

• None

A comma-separated list of directories to add to the Python path.

e.g. '/home/djangoprojects/myproject,/home/python/mylibrary'.

paste

• --paste STRING, --paster STRING

• None

Load a PasteDeploy config file. The argument may contain a # symbol followed by the name of an app section from
the config file, e.g. production.ini#admin.

At this time, using alternate server blocks is not supported. Use the command line arguments to control server config-
uration instead.

proxy_protocol

• --proxy-protocol

• False

Enable detect PROXY protocol (PROXY mode).

Allow using HTTP and Proxy together. It may be useful for work with stunnel as HTTPS frontend and Gunicorn as
HTTP server.

PROXY protocol: http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

Example for stunnel config:

[https]
protocol = proxy
accept = 443
connect = 80
cert = /etc/ssl/certs/stunnel.pem
key = /etc/ssl/certs/stunnel.key

proxy_allow_ips

• --proxy-allow-from

• 127.0.0.1

26 Chapter 2. Contents

http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

Gunicorn Documentation, Release 20.0.4

Front-end’s IPs from which allowed accept proxy requests (comma separate).

Set to * to disable checking of Front-end IPs (useful for setups where you don’t know in advance the IP address of
Front-end, but you still trust the environment)

raw_paste_global_conf

• --paste-global CONF

• []

Set a PasteDeploy global config variable in key=value form.

The option can be specified multiple times.

The variables are passed to the the PasteDeploy entrypoint. Example:

$ gunicorn -b 127.0.0.1:8000 --paste development.ini --paste-global FOO=1 --paste-
→˓global BAR=2

New in version 19.7.

strip_header_spaces

• --strip-header-spaces

• False

Strip spaces present between the header name and the the :.

This is known to induce vulnerabilities and is not compliant with the HTTP/1.1 standard. See https://portswigger.net/
research/http-desync-attacks-request-smuggling-reborn.

Use with care and only if necessary.

2.4.9 Server Socket

bind

• -b ADDRESS, --bind ADDRESS

• ['127.0.0.1:8000']

The socket to bind.

A string of the form: HOST, HOST:PORT, unix:PATH, fd://FD. An IP is a valid HOST.

Changed in version 20.0: Support for fd://FD got added.

Multiple addresses can be bound. ex.:

$ gunicorn -b 127.0.0.1:8000 -b [::1]:8000 test:app

will bind the test:app application on localhost both on ipv6 and ipv4 interfaces.

2.4. Settings 27

https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn

Gunicorn Documentation, Release 20.0.4

backlog

• --backlog INT

• 2048

The maximum number of pending connections.

This refers to the number of clients that can be waiting to be served. Exceeding this number results in the client getting
an error when attempting to connect. It should only affect servers under significant load.

Must be a positive integer. Generally set in the 64-2048 range.

2.4.10 Worker Processes

workers

• -w INT, --workers INT

• 1

The number of worker processes for handling requests.

A positive integer generally in the 2-4 x $(NUM_CORES) range. You’ll want to vary this a bit to find the best for
your particular application’s work load.

By default, the value of the WEB_CONCURRENCY environment variable. If it is not defined, the default is 1.

worker_class

• -k STRING, --worker-class STRING

• sync

The type of workers to use.

The default class (sync) should handle most “normal” types of workloads. You’ll want to read Design for informa-
tion on when you might want to choose one of the other worker classes. Required libraries may be installed using
setuptools’ extras_require feature.

A string referring to one of the following bundled classes:

• sync

• eventlet - Requires eventlet >= 0.24.1 (or install it via pip install gunicorn[eventlet])

• gevent - Requires gevent >= 1.4 (or install it via pip install gunicorn[gevent])

• tornado - Requires tornado >= 0.2 (or install it via pip install gunicorn[tornado])

• gthread - Python 2 requires the futures package to be installed (or install it via pip install
gunicorn[gthread])

Optionally, you can provide your own worker by giving Gunicorn a Python path to a subclass of gunicorn.
workers.base.Worker. This alternative syntax will load the gevent class: gunicorn.workers.ggevent.
GeventWorker.

28 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

threads

• --threads INT

• 1

The number of worker threads for handling requests.

Run each worker with the specified number of threads.

A positive integer generally in the 2-4 x $(NUM_CORES) range. You’ll want to vary this a bit to find the best for
your particular application’s work load.

If it is not defined, the default is 1.

This setting only affects the Gthread worker type.

Note: If you try to use the sync worker type and set the threads setting to more than 1, the gthread worker
type will be used instead.

worker_connections

• --worker-connections INT

• 1000

The maximum number of simultaneous clients.

This setting only affects the Eventlet and Gevent worker types.

max_requests

• --max-requests INT

• 0

The maximum number of requests a worker will process before restarting.

Any value greater than zero will limit the number of requests a worker will process before automatically restarting.
This is a simple method to help limit the damage of memory leaks.

If this is set to zero (the default) then the automatic worker restarts are disabled.

max_requests_jitter

• --max-requests-jitter INT

• 0

The maximum jitter to add to the max_requests setting.

The jitter causes the restart per worker to be randomized by randint(0, max_requests_jitter). This is
intended to stagger worker restarts to avoid all workers restarting at the same time.

New in version 19.2.

2.4. Settings 29

Gunicorn Documentation, Release 20.0.4

timeout

• -t INT, --timeout INT

• 30

Workers silent for more than this many seconds are killed and restarted.

Generally set to thirty seconds. Only set this noticeably higher if you’re sure of the repercussions for sync workers.
For the non sync workers it just means that the worker process is still communicating and is not tied to the length of
time required to handle a single request.

graceful_timeout

• --graceful-timeout INT

• 30

Timeout for graceful workers restart.

After receiving a restart signal, workers have this much time to finish serving requests. Workers still alive after the
timeout (starting from the receipt of the restart signal) are force killed.

keepalive

• --keep-alive INT

• 2

The number of seconds to wait for requests on a Keep-Alive connection.

Generally set in the 1-5 seconds range for servers with direct connection to the client (e.g. when you don’t have
separate load balancer). When Gunicorn is deployed behind a load balancer, it often makes sense to set this to a higher
value.

Note: sync worker does not support persistent connections and will ignore this option.

2.5 Instrumentation

New in version 19.1.

Gunicorn provides an optional instrumentation of the arbiter and workers using the statsD protocol over UDP. Thanks
to the gunicorn.instrument.statsd module, Gunicorn becomes a statsD client. The use of UDP cleanly
isolates Gunicorn from the receiving end of the statsD metrics so that instrumentation does not cause Gunicorn to be
held up by a slow statsD consumer.

To use statsD, just tell Gunicorn where the statsD server is:

$ gunicorn --statsd-host=localhost:8125 --statsd-prefix=service.app ...

The Statsd logger overrides gunicorn.glogging.Logger to track all requests. The following metrics are
generated:

• gunicorn.requests: request rate per second

• gunicorn.request.duration: histogram of request duration (in millisecond)

30 Chapter 2. Contents

https://github.com/etsy/statsd

Gunicorn Documentation, Release 20.0.4

• gunicorn.workers: number of workers managed by the arbiter (gauge)

• gunicorn.log.critical: rate of critical log messages

• gunicorn.log.error: rate of error log messages

• gunicorn.log.warning: rate of warning log messages

• gunicorn.log.exception: rate of exceptional log messages

See the statsd-host setting for more information.

2.6 Deploying Gunicorn

We strongly recommend to use Gunicorn behind a proxy server.

2.6.1 Nginx Configuration

Although there are many HTTP proxies available, we strongly advise that you use Nginx. If you choose another
proxy server you need to make sure that it buffers slow clients when you use default Gunicorn workers. Without this
buffering Gunicorn will be easily susceptible to denial-of-service attacks. You can use Hey to check if your proxy is
behaving properly.

An example configuration file for fast clients with Nginx:

Listing 1: nginx.conf

worker_processes 1;

user nobody nogroup;
'user nobody nobody;' for systems with 'nobody' as a group instead
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
worker_connections 1024; # increase if you have lots of clients
accept_mutex off; # set to 'on' if nginx worker_processes > 1
'use epoll;' to enable for Linux 2.6+
'use kqueue;' to enable for FreeBSD, OSX

}

http {
include mime.types;
fallback in case we can't determine a type
default_type application/octet-stream;
access_log /var/log/nginx/access.log combined;
sendfile on;

upstream app_server {
fail_timeout=0 means we always retry an upstream even if it failed
to return a good HTTP response

for UNIX domain socket setups
server unix:/tmp/gunicorn.sock fail_timeout=0;

for a TCP configuration

(continues on next page)

2.6. Deploying Gunicorn 31

settings.html#statsd-host
https://nginx.org/
https://github.com/rakyll/hey
https://github.com/benoitc/gunicorn/blob/master/examples/nginx.conf
https://nginx.org/

Gunicorn Documentation, Release 20.0.4

(continued from previous page)

server 192.168.0.7:8000 fail_timeout=0;
}

server {
if no Host match, close the connection to prevent host spoofing
listen 80 default_server;
return 444;

}

server {
use 'listen 80 deferred;' for Linux
use 'listen 80 accept_filter=httpready;' for FreeBSD
listen 80;
client_max_body_size 4G;

set the correct host(s) for your site
server_name example.com www.example.com;

keepalive_timeout 5;

path for static files
root /path/to/app/current/public;

location / {
checks for static file, if not found proxy to app
try_files $uri @proxy_to_app;

}

location @proxy_to_app {
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header Host $http_host;
we don't want nginx trying to do something clever with
redirects, we set the Host: header above already.
proxy_redirect off;
proxy_pass http://app_server;

}

error_page 500 502 503 504 /500.html;
location = /500.html {

root /path/to/app/current/public;
}

}
}

If you want to be able to handle streaming request/responses or other fancy features like Comet, Long polling, or Web
sockets, you need to turn off the proxy buffering. When you do this you must run with one of the async worker
classes.

To turn off buffering, you only need to add proxy_buffering off; to your location block:

...
location @proxy_to_app {

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_buffering off;

(continues on next page)

32 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

(continued from previous page)

proxy_pass http://app_server;
}
...

It is recommended to pass protocol information to Gunicorn. Many web frameworks use this information to gen-
erate URLs. Without this information, the application may mistakenly generate ‘http’ URLs in ‘https’ responses,
leading to mixed content warnings or broken applications. To configure Nginx to pass an appropriate header, add a
proxy_set_header directive to your location block:

...
proxy_set_header X-Forwarded-Proto $scheme;
...

If you are running Nginx on a different host than Gunicorn you need to tell Gunicorn to trust the X-Forwarded-*
headers sent by Nginx. By default, Gunicorn will only trust these headers if the connection comes from localhost.
This is to prevent a malicious client from forging these headers:

$ gunicorn -w 3 --forwarded-allow-ips="10.170.3.217,10.170.3.220" test:app

When the Gunicorn host is completely firewalled from the external network such that all connections come from a
trusted proxy (e.g. Heroku) this value can be set to ‘*’. Using this value is potentially dangerous if connections to
Gunicorn may come from untrusted proxies or directly from clients since the application may be tricked into serving
SSL-only content over an insecure connection.

Gunicorn 19 introduced a breaking change concerning how REMOTE_ADDR is handled. Previous to Gunicorn 19 this
was set to the value of X-Forwarded-For if received from a trusted proxy. However, this was not in compliance
with RFC 3875 which is why the REMOTE_ADDR is now the IP address of the proxy and not the actual user.

To have access logs indicate the actual user IP when proxied, set access_log_format with a format which includes
X-Forwarded-For. For example, this format uses X-Forwarded-For in place of REMOTE_ADDR:

%({x-forwarded-for}i)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s"

It is also worth noting that the REMOTE_ADDR will be completely empty if you bind Gunicorn to a UNIX socket and
not a TCP host:port tuple.

2.6.2 Using Virtualenv

To serve an app from a Virtualenv it is generally easiest to just install Gunicorn directly into the Virtualenv. This will
create a set of Gunicorn scripts for that Virtualenv which can be used to run applications normally.

If you have Virtualenv installed, you should be able to do something like this:

$ mkdir ~/venvs/
$ virtualenv ~/venvs/webapp
$ source ~/venvs/webapp/bin/activate
$ pip install gunicorn
$ deactivate

Then you just need to use one of the three Gunicorn scripts that was installed into ~/venvs/webapp/bin.

Note: You can force the installation of Gunicorn in your Virtualenv by passing -I or --ignore-installed
option to pip:

2.6. Deploying Gunicorn 33

https://tools.ietf.org/html/rfc3875.html
https://pypi.python.org/pypi/virtualenv

Gunicorn Documentation, Release 20.0.4

$ source ~/venvs/webapp/bin/activate
$ pip install -I gunicorn

2.6.3 Monitoring

Note: Make sure that when using either of these service monitors you do not enable the Gunicorn’s daemon mode.
These monitors expect that the process they launch will be the process they need to monitor. Daemonizing will fork-
exec which creates an unmonitored process and generally just confuses the monitor services.

Gaffer

Using Gafferd and gaffer

Gaffer can be used to monitor Gunicorn. A simple configuration is:

[process:gunicorn]
cmd = gunicorn -w 3 test:app
cwd = /path/to/project

Then you can easily manage Gunicorn using Gaffer.

Using a Procfile

Create a Procfile in your project:

gunicorn = gunicorn -w 3 test:app

You can launch any other applications that should be launched at the same time.

Then you can start your Gunicorn application using Gaffer:

gaffer start

If gafferd is launched you can also load your Procfile in it directly:

gaffer load

All your applications will be then supervised by gafferd.

Runit

A popular method for deploying Gunicorn is to have it monitored by runit. Here is an example service definition:

#!/bin/sh

GUNICORN=/usr/local/bin/gunicorn
ROOT=/path/to/project
PID=/var/run/gunicorn.pid

(continues on next page)

34 Chapter 2. Contents

https://gaffer.readthedocs.io/
https://gaffer.readthedocs.io/
https://gaffer.readthedocs.io/
http://smarden.org/runit/
https://github.com/benoitc/gunicorn/blob/master/examples/gunicorn_rc

Gunicorn Documentation, Release 20.0.4

(continued from previous page)

APP=main:application

if [-f $PID]; then rm $PID; fi

cd $ROOT
exec $GUNICORN -c $ROOT/gunicorn.conf.py --pid=$PID $APP

Save this as /etc/sv/[app_name]/run, and make it executable (chmod u+x /etc/sv/[app_name]/
run). Then run ln -s /etc/sv/[app_name] /etc/service/[app_name]. If runit is installed, Guni-
corn should start running automatically as soon as you create the symlink.

If it doesn’t start automatically, run the script directly to troubleshoot.

Supervisor

Another useful tool to monitor and control Gunicorn is Supervisor. A simple configuration is:

[program:gunicorn]
command=/path/to/gunicorn main:application -c /path/to/gunicorn.conf.py
directory=/path/to/project
user=nobody
autostart=true
autorestart=true
redirect_stderr=true

Upstart

Using Gunicorn with upstart is simple. In this example we will run the app “myapp” from a virtualenv. All errors will
go to /var/log/upstart/myapp.log.

/etc/init/myapp.conf:

description "myapp"

start on (filesystem)
stop on runlevel [016]

respawn
setuid nobody
setgid nogroup
chdir /path/to/app/directory

exec /path/to/virtualenv/bin/gunicorn myapp:app

Systemd

A tool that is starting to be common on linux systems is Systemd. It is a system services manager that allows for strict
process management, resources and permissions control.

Below are configurations files and instructions for using systemd to create a unix socket for incoming Gunicorn
requests. Systemd will listen on this socket and start gunicorn automatically in response to traffic. Later in this
section are instructions for configuring Nginx to forward web traffic to the newly created unix socket:

/etc/systemd/system/gunicorn.service:

2.6. Deploying Gunicorn 35

http://supervisord.org/
https://github.com/benoitc/gunicorn/blob/master/examples/supervisor.conf
https://www.freedesktop.org/wiki/Software/systemd/

Gunicorn Documentation, Release 20.0.4

[Unit]
Description=gunicorn daemon
Requires=gunicorn.socket
After=network.target

[Service]
Type=notify
the specific user that our service will run as
User=someuser
Group=someuser
another option for an even more restricted service is
DynamicUser=yes
see http://0pointer.net/blog/dynamic-users-with-systemd.html
RuntimeDirectory=gunicorn
WorkingDirectory=/home/someuser/applicationroot
ExecStart=/usr/bin/gunicorn applicationname.wsgi
ExecReload=/bin/kill -s HUP $MAINPID
KillMode=mixed
TimeoutStopSec=5
PrivateTmp=true

[Install]
WantedBy=multi-user.target

/etc/systemd/system/gunicorn.socket:

[Unit]
Description=gunicorn socket

[Socket]
ListenStream=/run/gunicorn.sock
Our service won't need permissions for the socket, since it
inherits the file descriptor by socket activation
only the nginx daemon will need access to the socket
User=www-data
Optionally restrict the socket permissions even more.
Mode=600

[Install]
WantedBy=sockets.target

Next enable and start the socket (it will autostart at boot too):

systemctl enable --now gunicorn.socket

Now let’s see if the nginx daemon will be able to connect to the socket. Running sudo -u www-data curl
--unix-socket /run/gunicorn.sock http, our Gunicorn service will be automatically started and you
should see some HTML from your server in the terminal.

Note: systemd employs cgroups to track the processes of a service, so it doesn’t need pid files. In the rare case that
you need to find out the service main pid, you can use systemctl show --value -p MainPID gunicorn.
service, but if you only want to send a signal an even better option is systemctl kill -s HUP gunicorn.
service.

Note: www-data is the default nginx user in debian, other distriburions use different users (for example: http or

36 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

nginx). Check you distro to know what to put for the socket user, and for the sudo command.

You must now configure your web proxy to send traffic to the new Gunicorn socket. Edit your nginx.conf to
include the following:

/etc/nginx/nginx.conf:

user www-data;
...
http {

server {
listen 8000;
server_name 127.0.0.1;
location / {

proxy_pass http://unix:/run/gunicorn.sock;
}

}
}
...

Note: The listen and server_name used here are configured for a local machine. In a production server you will most
likely listen on port 80, and use your URL as the server_name.

Now make sure you enable the nginx service so it automatically starts at boot:

systemctl enable nginx.service

Either reboot, or start Nginx with the following command:

systemctl start nginx

Now you should be able to test Nginx with Gunicorn by visiting http://127.0.0.1:8000/ in any web browser. Systemd
is now set up.

2.6.4 Logging

Logging can be configured by using various flags detailed in the configuration documentation or by creating a logging
configuration file. Send the USR1 signal to rotate logs if you are using the logrotate utility:

kill -USR1 $(cat /var/run/gunicorn.pid)

Note: Overriding the LOGGING dictionary requires to set disable_existing_loggers: False to not
interfere with the Gunicorn logging.

Warning: Gunicorn error log is here to log errors from Gunicorn, not from another application.

2.6. Deploying Gunicorn 37

http://127.0.0.1:8000/
http://docs.gunicorn.org/en/latest/settings.html#logging
https://github.com/benoitc/gunicorn/blob/master/examples/logging.conf
https://github.com/benoitc/gunicorn/blob/master/examples/logging.conf

Gunicorn Documentation, Release 20.0.4

2.7 Signal Handling

A brief description of the signals handled by Gunicorn. We also document the signals used internally by Gunicorn to
communicate with the workers.

2.7.1 Master process

• QUIT, INT: Quick shutdown

• TERM: Graceful shutdown. Waits for workers to finish their current requests up to the graceful_timeout.

• HUP: Reload the configuration, start the new worker processes with a new configuration and gracefully shutdown
older workers. If the application is not preloaded (using the preload_app option), Gunicorn will also load the
new version of it.

• TTIN: Increment the number of processes by one

• TTOU: Decrement the number of processes by one

• USR1: Reopen the log files

• USR2: Upgrade Gunicorn on the fly. A separate TERM signal should be used to kill the old master process. This
signal can also be used to use the new versions of pre-loaded applications. See Upgrading to a new binary on
the fly for more information.

• WINCH: Gracefully shutdown the worker processes when Gunicorn is daemonized.

2.7.2 Worker process

Sending signals directly to the worker processes should not normally be needed. If the master process is running, any
exited worker will be automatically respawned.

• QUIT, INT: Quick shutdown

• TERM: Graceful shutdown

• USR1: Reopen the log files

2.7.3 Reload the configuration

The HUP signal can be used to reload the Gunicorn configuration on the fly.

2013-06-29 06:26:55 [20682] [INFO] Handling signal: hup
2013-06-29 06:26:55 [20682] [INFO] Hang up: Master
2013-06-29 06:26:55 [20703] [INFO] Booting worker with pid: 20703
2013-06-29 06:26:55 [20702] [INFO] Booting worker with pid: 20702
2013-06-29 06:26:55 [20688] [INFO] Worker exiting (pid: 20688)
2013-06-29 06:26:55 [20687] [INFO] Worker exiting (pid: 20687)
2013-06-29 06:26:55 [20689] [INFO] Worker exiting (pid: 20689)
2013-06-29 06:26:55 [20704] [INFO] Booting worker with pid: 20704

Sending a HUP signal will reload the configuration, start the new worker processes with a new configuration and
gracefully shutdown older workers. If the application is not preloaded (using the preload_app option), Gunicorn will
also load the new version of it.

38 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

2.7.4 Upgrading to a new binary on the fly

Changed in version 19.6.0: PID file naming format has been changed from <name>.pid.oldbin to <name>.
pid.2.

If you need to replace the Gunicorn binary with a new one (when upgrading to a new version or adding/removing server
modules), you can do it without any service downtime - no incoming requests will be lost. Preloaded applications will
also be reloaded.

First, replace the old binary with a new one, then send a USR2 signal to the current master process. It executes a new
binary whose PID file is postfixed with .2 (e.g. /var/run/gunicorn.pid.2), which in turn starts a new master
process and new worker processes:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20844 benoitc 20 0 54808 11m 3352 S 0.0 0.1 0:00.36 gunicorn: master
→˓[test:app]
20849 benoitc 20 0 54808 9.9m 1500 S 0.0 0.1 0:00.02 gunicorn: worker
→˓[test:app]
20850 benoitc 20 0 54808 9.9m 1500 S 0.0 0.1 0:00.01 gunicorn: worker
→˓[test:app]
20851 benoitc 20 0 54808 9.9m 1500 S 0.0 0.1 0:00.01 gunicorn: worker
→˓[test:app]
20854 benoitc 20 0 55748 12m 3348 S 0.0 0.2 0:00.35 gunicorn: master
→˓[test:app]
20859 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.01 gunicorn: worker
→˓[test:app]
20860 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.00 gunicorn: worker
→˓[test:app]
20861 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.01 gunicorn: worker
→˓[test:app]

At this point, two instances of Gunicorn are running, handling the incoming requests together. To phase the old
instance out, you have to send a WINCH signal to the old master process, and its worker processes will start to gracefully
shut down.

At this point you can still revert to the old process since it hasn’t closed its listen sockets yet, by following these steps:

• Send a HUP signal to the old master process - it will start the worker processes without reloading a configuration
file

• Send a TERM signal to the new master process to gracefully shut down its worker processes

• Send a QUIT signal to the new master process to force it quit

If for some reason the new worker processes do not quit, send a KILL signal to them after the new master process
quits, and everything will back to exactly as before the upgrade attempt.

If the update is successful and you want to keep the new master process, send a TERM signal to the old master process
to leave only the new server running:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20854 benoitc 20 0 55748 12m 3348 S 0.0 0.2 0:00.45 gunicorn: master
→˓[test:app]
20859 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.02 gunicorn: worker
→˓[test:app]
20860 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.02 gunicorn: worker
→˓[test:app]
20861 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.01 gunicorn: worker
→˓[test:app]

2.7. Signal Handling 39

Gunicorn Documentation, Release 20.0.4

2.8 Custom Application

New in version 19.0.

Sometimes, you want to integrate Gunicorn with your WSGI application. In this case, you can inherit from
gunicorn.app.base.BaseApplication.

Here is a small example where we create a very small WSGI app and load it with a custom Application:

import multiprocessing

import gunicorn.app.base

def number_of_workers():
return (multiprocessing.cpu_count() * 2) + 1

def handler_app(environ, start_response):
response_body = b'Works fine'
status = '200 OK'

response_headers = [
('Content-Type', 'text/plain'),

]

start_response(status, response_headers)

return [response_body]

class StandaloneApplication(gunicorn.app.base.BaseApplication):

def __init__(self, app, options=None):
self.options = options or {}
self.application = app
super().__init__()

def load_config(self):
config = {key: value for key, value in self.options.items()

if key in self.cfg.settings and value is not None}
for key, value in config.items():

self.cfg.set(key.lower(), value)

def load(self):
return self.application

if __name__ == '__main__':
options = {

'bind': '%s:%s' % ('127.0.0.1', '8080'),
'workers': number_of_workers(),

}
StandaloneApplication(handler_app, options).run()

40 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

2.8.1 Direct Usage of Existing WSGI Apps

If necessary, you can run Gunicorn straight from Python, allowing you to specify a WSGI-compatible application
at runtime. This can be handy for rolling deploys or in the case of using PEX files to deploy your application, as
the app and Gunicorn can be bundled in the same PEX file. Gunicorn has this functionality built-in as a first class
citizen known as gunicorn.app.wsgiapp. This can be used to run WSGI-compatible app instances such as those
produced by Flask or Django. Assuming your WSGI API package is exampleapi, and your application instance is app,
this is all you need to get going:

gunicorn.app.wsgiapp exampleapi:app

This command will work with any Gunicorn CLI parameters or a config file - just pass them along as if you’re directly
giving them to Gunicorn:

Custom parameters
$ python gunicorn.app.wsgiapp exampleapi:app --bind=0.0.0.0:8081 --workers=4
Using a config file
$ python gunicorn.app.wsgiapp exampleapi:app -c config.py

Note for those using PEX: use -c gunicorn as your entry at build time, and your compiled app should work with
the entry point passed to it at run time.

Generic pex build command via bash from root of exampleapi project
$ pex . -v -c gunicorn -o compiledapp.pex
Running it
./compiledapp.pex exampleapi:app -c gunicorn_config.py

2.9 Design

A brief description of the architecture of Gunicorn.

2.9.1 Server Model

Gunicorn is based on the pre-fork worker model. This means that there is a central master process that manages a
set of worker processes. The master never knows anything about individual clients. All requests and responses are
handled completely by worker processes.

Master

The master process is a simple loop that listens for various process signals and reacts accordingly. It manages the list
of running workers by listening for signals like TTIN, TTOU, and CHLD. TTIN and TTOU tell the master to increase
or decrease the number of running workers. CHLD indicates that a child process has terminated, in this case the master
process automatically restarts the failed worker.

Sync Workers

The most basic and the default worker type is a synchronous worker class that handles a single request at a time. This
model is the simplest to reason about as any errors will affect at most a single request. Though as we describe below
only processing a single request at a time requires some assumptions about how applications are programmed.

sync worker does not support persistent connections - each connection is closed after response has been sent (even if
you manually add Keep-Alive or Connection: keep-alive header in your application).

2.9. Design 41

Gunicorn Documentation, Release 20.0.4

Async Workers

The asynchronous workers available are based on Greenlets (via Eventlet and Gevent). Greenlets are an implementa-
tion of cooperative multi-threading for Python. In general, an application should be able to make use of these worker
classes with no changes.

For full greenlet support applications might need to be adapted. When using, e.g., Gevent and Psycopg it makes sense
to ensure psycogreen is installed and setup.

Other applications might not be compatible at all as they, e.g., rely on the original unpatched behavior.

Tornado Workers

There’s also a Tornado worker class. It can be used to write applications using the Tornado framework. Although the
Tornado workers are capable of serving a WSGI application, this is not a recommended configuration.

AsyncIO Workers

These workers are compatible with Python 3.

The worker gthread is a threaded worker. It accepts connections in the main loop, accepted connections are added to
the thread pool as a connection job. On keepalive connections are put back in the loop waiting for an event. If no event
happen after the keep alive timeout, the connection is closed.

You can port also your application to use aiohttp’s web.Application‘ API and use the aiohttp.worker.
GunicornWebWorker worker.

2.9.2 Choosing a Worker Type

The default synchronous workers assume that your application is resource-bound in terms of CPU and network band-
width. Generally this means that your application shouldn’t do anything that takes an undefined amount of time. An
example of something that takes an undefined amount of time is a request to the internet. At some point the external
network will fail in such a way that clients will pile up on your servers. So, in this sense, any web application which
makes outgoing requests to APIs will benefit from an asynchronous worker.

This resource bound assumption is why we require a buffering proxy in front of a default configuration Gunicorn. If
you exposed synchronous workers to the internet, a DOS attack would be trivial by creating a load that trickles data to
the servers. For the curious, Hey is an example of this type of load.

Some examples of behavior requiring asynchronous workers:

• Applications making long blocking calls (Ie, external web services)

• Serving requests directly to the internet

• Streaming requests and responses

• Long polling

• Web sockets

• Comet

42 Chapter 2. Contents

https://github.com/python-greenlet/greenlet
http://eventlet.net/
http://www.gevent.org/
http://www.gevent.org/
http://initd.org/psycopg/
https://bitbucket.org/dvarrazzo/psycogreen
http://www.gevent.org/api/gevent.monkey.html#plugins
https://docs.aiohttp.org/en/stable/deployment.html#nginx-gunicorn
https://github.com/rakyll/hey

Gunicorn Documentation, Release 20.0.4

2.9.3 How Many Workers?

DO NOT scale the number of workers to the number of clients you expect to have. Gunicorn should only need 4-12
worker processes to handle hundreds or thousands of requests per second.

Gunicorn relies on the operating system to provide all of the load balancing when handling requests. Generally we
recommend (2 x $num_cores) + 1 as the number of workers to start off with. While not overly scientific, the
formula is based on the assumption that for a given core, one worker will be reading or writing from the socket while
the other worker is processing a request.

Obviously, your particular hardware and application are going to affect the optimal number of workers. Our recom-
mendation is to start with the above guess and tune using TTIN and TTOU signals while the application is under
load.

Always remember, there is such a thing as too many workers. After a point your worker processes will start thrashing
system resources decreasing the throughput of the entire system.

2.9.4 How Many Threads?

Since Gunicorn 19, a threads option can be used to process requests in multiple threads. Using threads assumes use of
the gthread worker. One benefit from threads is that requests can take longer than the worker timeout while notifying
the master process that it is not frozen and should not be killed. Depending on the system, using multiple threads,
multiple worker processes, or some mixture, may yield the best results. For example, CPython may not perform as well
as Jython when using threads, as threading is implemented differently by each. Using threads instead of processes is a
good way to reduce the memory footprint of Gunicorn, while still allowing for application upgrades using the reload
signal, as the application code will be shared among workers but loaded only in the worker processes (unlike when
using the preload setting, which loads the code in the master process).

Note: Under Python 2.x, you need to install the ‘futures’ package to use this feature.

2.10 FAQ

2.10.1 WSGI Bits

How do I set SCRIPT_NAME?

By default SCRIPT_NAME is an empty string. The value could be set by setting SCRIPT_NAME in the environment
or as an HTTP header.

2.10.2 Server Stuff

How do I reload my application in Gunicorn?

You can gracefully reload by sending HUP signal to gunicorn:

$ kill -HUP masterpid

2.10. FAQ 43

Gunicorn Documentation, Release 20.0.4

How might I test a proxy configuration?

The Hey program is a great way to test that your proxy is correctly buffering responses for the synchronous workers:

$ hey -n 10000 -c 100 http://127.0.0.1:5000/

This runs a benchmark of 10000 requests with 100 running concurrently.

How can I name processes?

If you install the Python package setproctitle Gunicorn will set the process names to something a bit more meaningful.
This will affect the output you see in tools like ps and top. This helps for distinguishing the master process as
well as between masters when running more than one app on a single machine. See the proc_name setting for more
information.

Why is there no HTTP Keep-Alive?

The default Sync workers are designed to run behind Nginx which only uses HTTP/1.0 with its upstream servers. If
you want to deploy Gunicorn to handle unbuffered requests (ie, serving requests directly from the internet) you should
use one of the async workers.

2.10.3 Worker Processes

How do I know which type of worker to use?

Read the Design page for help on the various worker types.

What types of workers are there?

Check out the configuration docs for worker_class.

How can I figure out the best number of worker processes?

Here is our recommendation for tuning the number of workers.

How can I change the number of workers dynamically?

TTIN and TTOU signals can be sent to the master to increase or decrease the number of workers.

To increase the worker count by one:

$ kill -TTIN $masterpid

To decrease the worker count by one:

$ kill -TTOU $masterpid

44 Chapter 2. Contents

https://github.com/rakyll/hey
https://pypi.python.org/pypi/setproctitle
settings.html#proc-name
settings.html#worker-class
design.html#how-many-workers

Gunicorn Documentation, Release 20.0.4

Does Gunicorn suffer from the thundering herd problem?

The thundering herd problem occurs when many sleeping request handlers, which may be either threads or processes,
wake up at the same time to handle a new request. Since only one handler will receive the request, the others will have
been awakened for no reason, wasting CPU cycles. At this time, Gunicorn does not implement any IPC solution for
coordinating between worker processes. You may experience high load due to this problem when using many workers
or threads. However a work has been started to remove this issue.

Why I don’t see any logs in the console?

In version 19.0, Gunicorn doesn’t log by default in the console. To watch the logs in the console you need to use the
option --log-file=-. In version 19.2, Gunicorn logs to the console by default again.

2.10.4 Kernel Parameters

When dealing with large numbers of concurrent connections there are a handful of kernel parameters that you might
need to adjust. Generally these should only affect sites with a very large concurrent load. These parameters are not
specific to Gunicorn, they would apply to any sort of network server you may be running.

These commands are for Linux. Your particular OS may have slightly different parameters.

How can I increase the maximum number of file descriptors?

One of the first settings that usually needs to be bumped is the maximum number of open file descriptors for a given
process. For the confused out there, remember that Unices treat sockets as files.

$ sudo ulimit -n 2048

How can I increase the maximum socket backlog?

Listening sockets have an associated queue of incoming connections that are waiting to be accepted. If you happen to
have a stampede of clients that fill up this queue new connections will eventually start getting dropped.

$ sudo sysctl -w net.core.somaxconn="2048"

How can I disable the use of sendfile()

Disabling the use sendfile() can be done by using the --no-sendfile setting or by setting the environment
variable SENDFILE to 0.

2.10.5 Troubleshooting

How do I fix Django reporting an ImproperlyConfigured error?

With asynchronous workers, creating URLs with the reverse function of django.core.urlresolvers may
fail. Use reverse_lazy instead.

2.10. FAQ 45

https://github.com/benoitc/gunicorn/issues/792

Gunicorn Documentation, Release 20.0.4

How do I avoid Gunicorn excessively blocking in os.fchmod?

The current heartbeat system involves calling os.fchmod on temporary file handlers and may block a worker for
arbitrary time if the directory is on a disk-backed filesystem. For example, by default /tmp is not mounted as tmpfs
in Ubuntu; in AWS an EBS root instance volume may sometimes hang for half a minute and during this time Gunicorn
workers may completely block in os.fchmod. os.fchmod may introduce extra delays if the disk gets full. Also
Gunicorn may refuse to start if it can’t create the files when the disk is full.

Currently to avoid these problems you can use a tmpfs mount (for a new directory or for /tmp) and pass its path to
--worker-tmp-dir. First, check whether your /tmp is disk-backed or RAM-backed:

$ df /tmp
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvda1 /

No luck. If you are using Fedora or Ubuntu, you should already have a tmpfs mount at /dev/shm:

$ df /dev/shm
Filesystem 1K-blocks Used Available Use% Mounted on
tmpfs /dev/shm

In this case you can set --worker-tmp-dir /dev/shm, otherwise you can create a new tmpfs mount:

sudo cp /etc/fstab /etc/fstab.orig
sudo mkdir /mem
echo 'tmpfs /mem tmpfs defaults,size=64m,mode=1777,noatime,comment=for-gunicorn
→˓0 0' | sudo tee -a /etc/fstab
sudo mount /mem

Check the result:

$ df /mem
Filesystem 1K-blocks Used Available Use% Mounted on
tmpfs 65536 0 65536 0% /mem

Now you can set --worker-tmp-dir /mem.

2.11 Community

Use these channels to communicate about the project.

2.11.1 Project Management & Discussions

Gunicorn uses GitHub for the project management. GitHub issues are used for 3 different purposes:

• Bug tracker : to check latest bug

• Forum : Stackoverflow-style questions about Gunicorn usage

• Mailing list : Discussion of Gunicorn development, new features and project management.

Project maintenance guidelines are avaible on the wiki .

46 Chapter 2. Contents

https://github.com/benoitc/gunicorn/projects
https://github.com/benoitc/gunicorn/projects/2
https://github.com/benoitc/gunicorn/projects/4
https://github.com/benoitc/gunicorn/projects/3
https://github.com/benoitc/gunicorn/wiki/Project-management

Gunicorn Documentation, Release 20.0.4

2.11.2 IRC

The Gunicorn channel is on the Freenode IRC network. You can chat with other on #gunicorn channel.

2.11.3 Issue Tracking

Bug reports, enhancement requests and tasks generally go in the Github issue tracker.

2.11.4 Security Issues

The security mailing list is a place to report security issues. Only developers are subscribed to it. To post a message to
the list use the address to security@gunicorn.org .

2.12 Changelog

2.12.1 20.0.4 / 2019/11/26

• fix binding a socket using the file descriptor

• remove support for the bdist_rpm build

2.12.2 20.0.3 / 2019/11/24

• fixed load of a config file without a Python extension

• fixed socketfromfd.fromfd when defaults are not set

Note: we now warn when we load a config file without Python Extension

2.12.3 20.0.2 / 2019/11/23

• fix changelog

2.12.4 20.0.1 / 2019/11/23

• fixed the way the config module is loaded. __file__ is now available

• fixed wsgi.input_terminated. It is always true.

• use the highest protocol version of openssl by default

• only support Python >= 3.5

• added __repr__ method to Config instance

• fixed support of AIX platform and musl libc in socketfromfd.fromfd function

• fixed support of applications loaded from a factory function

• fixed chunked encoding support to prevent any request smuggling

2.12. Changelog 47

http://freenode.net/
http://webchat.freenode.net/?channels=gunicorn
http://github.com/benoitc/gunicorn/issues
mailto:security@gunicorn.org
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn

Gunicorn Documentation, Release 20.0.4

• Capture os.sendfile before patching in gevent and eventlet workers. fix RecursionError.

• removed locking in reloader when adding new files

• load the WSGI application before the loader to pick up all files

Note: this release add official support for applications loaded from a factory function as documented in Flask and
other places.

2.12.5 19.10.0 / 2019/11/23

• unblock select loop during reload of a sync worker

• security fix: http desync attack

• handle wsgi.input_terminated

• added support for str and bytes in unix socket addresses

• fixed max_requests setting

• headers values are now encoded as LATN1, not ASCII

• fixed InotifyReloadeder: handle module.__file__ is None

• fixed compatibility with tornado 6

• fixed root logging

• Prevent removalof unix sockets from reuse_port

• Clear tornado ioloop before os.fork

• Miscellaneous fixes and improvement for linting using Pylint

2.12.6 20.0 / 2019/10/30

• Fixed fdopen RuntimeWarning in Python 3.8

• Added check and exception for str type on value in Response process_headers method.

• Ensure WSGI header value is string before conducting regex search on it.

• Added pypy3 to list of tested environments

• Grouped StopIteration and KeyboardInterrupt exceptions with same body together in Arbiter.run()

• Added setproctitle module to extras_require in setup.py

• Avoid unnecessary chown of temporary files

• Logging: Handle auth type case insensitively

• Removed util.import_module

• Removed fallback for types.SimpleNamespace in tests utils

• Use SourceFileLoader instead instead of execfile_

• Use importlib instead of __import__ and eval‘

• Fixed eventlet patching

• Added optional datadog tags for statsd metrics

48 Chapter 2. Contents

https://www.datadoghq.com

Gunicorn Documentation, Release 20.0.4

• Header values now are encoded using latin-1, not ascii.

• Rewritten parse_address util added test

• Removed redundant super() arguments

• Simplify futures import in gthread module

• Fixed worker_connections‘ setting to also affects the Gthread worker type

• Fixed setting max_requests

• Bump minimum Eventlet and Gevent versions to 0.24 and 1.4

• Use Python default SSL cipher list by default

• handle wsgi.input_terminated extension

• Simplify Paste Deployment documentation

• Fix root logging: root and logger are same level.

• Fixed typo in ssl_version documentation

• Documented systemd deployement unit examples

• Added systemd sd_notify support

• Fixed typo in gthread.py

• Added tornado 5 and 6 support

• Declare our setuptools dependency

• Added support to –bind to open file descriptors

• Document how to serve WSGI app modules from Gunicorn

• Provide guidance on X-Forwarded-For access log in documentation

• Add support for named constants in the –ssl-version flag

• Clarify log format usage of header & environment in documentation

• Fixed systemd documentation to properly setup gunicorn unix socket

• Prevent removal unix socket for reuse_port

• Fix ResourceWarning when reading a Python config module

• Remove unnecessary call to dict keys method

• Support str and bytes for UNIX socket addresses

• fixed InotifyReloadeder: handle module.__file__ is None

• /dev/shm as a convenient alternative to making your own tmpfs mount in fchmod FAQ

• fix examples to work on python3

• Fix typo in –max-requests documentation

• Clear tornado ioloop before os.fork

• Miscellaneous fixes and improvement for linting using Pylint

2.12. Changelog 49

https://www.tornadoweb.org/

Gunicorn Documentation, Release 20.0.4

Breaking Change

• Removed gaiohttp worker

• Drop support for Python 2.x

• Drop support for EOL Python 3.2 and 3.3

• Drop support for Paste Deploy server blocks

2.12.7 History

Changelog - 2018

Note: Please see Changelog for the latest changes

19.9.0 / 2018/07/03

• fix: address a regression that prevented syslog support from working (issue 1668, pull request 1773)

• fix: correctly set REMOTE_ADDR on versions of Python 3 affected by Python Issue 30205 (issue 1755, pull
request 1796)

• fix: show zero response length correctly in access log (pull request 1787)

• fix: prevent raising AttributeError when --reload is not passed in case of a SyntaxError raised
from the WSGI application. (issue 1805, pull request 1806)

• The internal module gunicorn.workers.async was renamed to gunicorn.workers.base_async
since async is now a reserved word in Python 3.7. (pull request 1527)

19.8.1 / 2018/04/30

• fix: secure scheme headers when bound to a unix socket (issue 1766, pull request 1767)

19.8.0 / 2018/04/28

• Eventlet 0.21.0 support (issue 1584)

• Tornado 5 support (issue 1728, pull request 1752)

• support watching additional files with --reload-extra-file (pull request 1527)

• support configuring logging with a dictionary with --logging-config-dict (issue 1087, pull request
1110, pull request 1602)

• add support for the --config flag in the GUNICORN_CMD_ARGS environment variable (issue 1576, pull
request 1581)

• disable SO_REUSEPORT by default and add the --reuse-port setting (issue 1553, issue 1603, pull request
1669)

• fix: installing inotify on MacOS no longer breaks the reloader (issue 1540, pull request 1541)

• fix: do not throw TypeError when SO_REUSEPORT is not available (issue 1501, pull request 1491)

50 Chapter 2. Contents

https://github.com/benoitc/gunicorn/issues/1668
https://github.com/benoitc/gunicorn/pull/1773
https://bugs.python.org/issue30205
https://github.com/benoitc/gunicorn/issues/1755
https://github.com/benoitc/gunicorn/pull/1796
https://github.com/benoitc/gunicorn/pull/1796
https://github.com/benoitc/gunicorn/pull/1787
https://github.com/benoitc/gunicorn/issues/1805
https://github.com/benoitc/gunicorn/pull/1806
https://github.com/benoitc/gunicorn/pull/1527
https://github.com/benoitc/gunicorn/issues/1766
https://github.com/benoitc/gunicorn/pull/1767
https://github.com/benoitc/gunicorn/issues/1584
https://github.com/benoitc/gunicorn/issues/1728
https://github.com/benoitc/gunicorn/pull/1752
https://github.com/benoitc/gunicorn/pull/1527
https://github.com/benoitc/gunicorn/issues/1087
https://github.com/benoitc/gunicorn/pull/1110
https://github.com/benoitc/gunicorn/pull/1110
https://github.com/benoitc/gunicorn/pull/1602
https://github.com/benoitc/gunicorn/issues/1576
https://github.com/benoitc/gunicorn/pull/1581
https://github.com/benoitc/gunicorn/pull/1581
https://github.com/benoitc/gunicorn/issues/1553
https://github.com/benoitc/gunicorn/issues/1603
https://github.com/benoitc/gunicorn/pull/1669
https://github.com/benoitc/gunicorn/pull/1669
https://github.com/benoitc/gunicorn/issues/1540
https://github.com/benoitc/gunicorn/pull/1541
https://github.com/benoitc/gunicorn/issues/1501
https://github.com/benoitc/gunicorn/pull/1491

Gunicorn Documentation, Release 20.0.4

• fix: properly decode HTTP paths containing certain non-ASCII characters (issue 1577, pull request 1578)

• fix: remove whitespace when logging header values under gevent (pull request 1607)

• fix: close unlinked temporary files (issue 1327, pull request 1428)

• fix: parse --umask=0 correctly (issue 1622, pull request 1632)

• fix: allow loading applications using relative file paths (issue 1349, pull request 1481)

• fix: force blocking mode on the gevent sockets (issue 880, pull request 1616)

• fix: preserve leading / in request path (issue 1512, pull request 1511)

• fix: forbid contradictory secure scheme headers

• fix: handle malformed basic authentication headers in access log (issue 1683, pull request 1684)

• fix: defer handling of USR1 signal to a new greenlet under gevent (issue 1645, pull request 1651)

• fix: the threaded worker would sometimes close the wrong keep-alive connection under Python 2 (issue 1698,
pull request 1699)

• fix: re-open log files on USR1 signal using handler._open to support subclasses of FileHandler (issue
1739, pull request 1742)

• deprecation: the gaiohttp worker is deprecated, see the worker_class documentation for more information
(issue 1338, pull request 1418, pull request 1569)

Changelog - 2017

Note: Please see Changelog for the latest changes

19.7.1 / 2017/03/21

• fix: continue if SO_REUSEPORT seems to be available but fails (issue 1480)

• fix: support non-decimal values for the umask command line option (issue 1325)

19.7.0 / 2017/03/01

• The previously deprecated gunicorn_django command has been removed. Use the gunicorn command-line
interface instead.

• The previously deprecated django_settings setting has been removed. Use the raw_env setting instead.

• The default value of ssl_version has been changed from ssl.PROTOCOL_TLSv1 to ssl.
PROTOCOL_SSLv23.

• fix: initialize the group access list when initgroups is set (issue 1297)

• add environment variables to gunicorn access log format (issue 1291)

• add –paste-global-conf option (issue 1304)

• fix: print access logs to STDOUT (issue 1184)

• remove upper limit on max header size config (issue 1313)

• fix: print original exception on AppImportError (issue 1334)

2.12. Changelog 51

https://github.com/benoitc/gunicorn/issues/1577
https://github.com/benoitc/gunicorn/pull/1578
https://github.com/benoitc/gunicorn/pull/1607
https://github.com/benoitc/gunicorn/issues/1327
https://github.com/benoitc/gunicorn/pull/1428
https://github.com/benoitc/gunicorn/issues/1622
https://github.com/benoitc/gunicorn/pull/1632
https://github.com/benoitc/gunicorn/issues/1349
https://github.com/benoitc/gunicorn/pull/1481
https://github.com/benoitc/gunicorn/issues/880
https://github.com/benoitc/gunicorn/pull/1616
https://github.com/benoitc/gunicorn/issues/1512
https://github.com/benoitc/gunicorn/pull/1511
https://github.com/benoitc/gunicorn/issues/1683
https://github.com/benoitc/gunicorn/pull/1684
https://github.com/benoitc/gunicorn/issues/1645
https://github.com/benoitc/gunicorn/pull/1651
https://github.com/benoitc/gunicorn/issues/1698
https://github.com/benoitc/gunicorn/pull/1699
https://github.com/benoitc/gunicorn/issues/1739
https://github.com/benoitc/gunicorn/issues/1739
https://github.com/benoitc/gunicorn/pull/1742
https://github.com/benoitc/gunicorn/issues/1338
https://github.com/benoitc/gunicorn/pull/1418
https://github.com/benoitc/gunicorn/pull/1569
https://github.com/benoitc/gunicorn/issues/1480
https://github.com/benoitc/gunicorn/issues/1325
https://github.com/benoitc/gunicorn/issues/1297
https://github.com/benoitc/gunicorn/issues/1291
https://github.com/benoitc/gunicorn/issues/1304
https://github.com/benoitc/gunicorn/issues/1184
https://github.com/benoitc/gunicorn/issues/1313
https://github.com/benoitc/gunicorn/issues/1334

Gunicorn Documentation, Release 20.0.4

• use SO_REUSEPORT if available (issue 1344)

• fix leak of duplicate file descriptor for bound sockets.

• add –reload-engine option, support inotify and other backends (issue 1368, issue 1459)

• fix: reject request with invalid HTTP versions

• add child_exit callback (issue 1394)

• add support for eventlets _AlreadyHandled object (issue 1406)

• format boot tracebacks properly with reloader (issue 1408)

• refactor socket activation and fd inheritance for better support of SystemD (issue 1310)

• fix: o fds are given by default in gunicorn (issue 1423)

• add ability to pass settings to GUNICORN_CMD_ARGS environment variable which helps in container world
(issue 1385)

• fix: catch access denied to pid file (issue 1091)

• many additions and improvements to the documentation

Breaking Change

• Python 2.6.0 is the last supported version

Changelog - 2016

Note: Please see Changelog for the latest changes

19.6.0 / 2016/05/21

Core & Logging

• improvement of the binary upgrade behaviour using USR2: remove file locking (issue 1270)

• add the --capture-output setting to capture stdout/stderr tot the log file (issue 1271)

• Allow disabling sendfile() via the SENDFILE environment variable (issue 1252)

• fix reload under pycharm (issue 1129)

Workers

• fix: make sure to remove the signal from the worker pipe (issue 1269)

• fix: gthread worker, handle removed socket in the select loop (issue 1258)

52 Chapter 2. Contents

https://github.com/benoitc/gunicorn/issues/1344
https://github.com/benoitc/gunicorn/commit/b4c41481e2d5ef127199a4601417a6819053c3fd
https://github.com/benoitc/gunicorn/issues/1368
https://github.com/benoitc/gunicorn/issues/1459
https://github.com/benoitc/gunicorn/issues/1394
https://github.com/benoitc/gunicorn/issues/1406
https://github.com/benoitc/gunicorn/issues/1408
https://github.com/benoitc/gunicorn/issues/1310
https://github.com/benoitc/gunicorn/issues/1423
https://github.com/benoitc/gunicorn/issues/1385
https://github.com/benoitc/gunicorn/issues/1091
https://github.com/benoitc/gunicorn/issues/1270
https://github.com/benoitc/gunicorn/issues/1271
https://github.com/benoitc/gunicorn/issues/1252
https://github.com/benoitc/gunicorn/issues/1129
https://github.com/benoitc/gunicorn/issues/1269
https://github.com/benoitc/gunicorn/issues/1258

Gunicorn Documentation, Release 20.0.4

19.5.0 / 2016/05/10

Core

• fix: Ensure response to HEAD request won’t have message body

• fix: lock domain socket and remove on last arbiter exit (issue 1220)

• improvement: use EnvironmentError instead of socket.error (issue 939)

• add: new FORWARDED_ALLOW_IPS environment variable (issue 1205)

• fix: infinite recursion when destroying sockets (issue 1219)

• fix: close sockets on shutdown (issue 922)

• fix: clean up sys.exc_info calls to drop circular refs (issue 1228)

• fix: do post_worker_init after load_wsgi (issue 1248)

Workers

• fix access logging in gaiohttp worker (issue 1193)

• eventlet: handle QUIT in a new coroutine (issue 1217)

• gevent: remove obsolete exception clauses in run (issue 1218)

• tornado: fix extra “Server” response header (issue 1246)

• fix: unblock the wait loop under python 3.5 in sync worker (issue 1256)

Logging

• fix: log message for listener reloading (issue 1181)

• Let logging module handle traceback printing (issue 1201)

• improvement: Allow configuring logger_class with statsd_host (issue 1188)

• fix: traceback formatting (issue 1235)

• fix: print error logs on stderr and access logs on stdout (issue 1184)

Documentation

• Simplify installation instructions in gunicorn.org (issue 1072)

• Fix URL and default worker type in example_config (issue 1209)

• update django doc url to 1.8 lts (issue 1213)

• fix: miscellaneous wording corrections (issue 1216)

• Add PSF License Agreement of selectors.py to NOTICE (:issue: 1226)

• document LOGGING overriding (issue 1051)

• put a note that error logs are only errors from Gunicorn (issue 1124)

• add a note about the requirements of the threads workers under python 2.x (issue 1200)

2.12. Changelog 53

https://github.com/benoitc/gunicorn/issues/1220
https://github.com/benoitc/gunicorn/issues/939
https://github.com/benoitc/gunicorn/issues/1205
https://github.com/benoitc/gunicorn/issues/1219
https://github.com/benoitc/gunicorn/issues/922
https://github.com/benoitc/gunicorn/issues/1228
https://github.com/benoitc/gunicorn/issues/1248
https://github.com/benoitc/gunicorn/issues/1193
https://github.com/benoitc/gunicorn/issues/1217
https://github.com/benoitc/gunicorn/issues/1218
https://github.com/benoitc/gunicorn/issues/1246
https://github.com/benoitc/gunicorn/issues/1256
https://github.com/benoitc/gunicorn/issues/1181
https://github.com/benoitc/gunicorn/issues/1201
https://github.com/benoitc/gunicorn/issues/1188
https://github.com/benoitc/gunicorn/issues/1235
https://github.com/benoitc/gunicorn/issues/1184
https://github.com/benoitc/gunicorn/issues/1072
https://github.com/benoitc/gunicorn/issues/1209
https://github.com/benoitc/gunicorn/issues/1213
https://github.com/benoitc/gunicorn/issues/1216
https://github.com/benoitc/gunicorn/issues/1051
https://github.com/benoitc/gunicorn/issues/1124
https://github.com/benoitc/gunicorn/issues/1200

Gunicorn Documentation, Release 20.0.4

• add access_log_format to config example (issue 1251)

Tests

• Use more pytest.raises() in test_http.py

19.4.5 / 2016/01/05

• fix: NameError fileno in gunicorn.http.wsgi (issue 1178)

19.4.4 / 2016/01/04

• fix: check if a fileobject can be used with sendfile(2) (issue 1174)

• doc: be more descriptive in errorlog option (issue 1173)

Changelog - 2015

Note: Please see Changelog for the latest changes.

19.4.3 / 2015/12/30

• fix: don’t check if a file is writable using os.stat with SELINUX (issue 1171)

19.4.2 / 2015/12/29

Core

• improvement: handle HaltServer in manage_workers (issue 1095)

• fix: Do not rely on sendfile sending requested count (issue 1155)

• fix: claridy –no-sendfile default (issue 1156)

• fix: LoggingCatch sendfile failure from no file descriptor (issue 1160)

Logging

• fix: Always send access log to syslog if syslog is on

• fix: check auth before trying to own a file (issue 1157)

Documentation

• fix: Fix Slowloris broken link. (issue 1142)

• Tweak markup in faq.rst

54 Chapter 2. Contents

https://github.com/benoitc/gunicorn/issues/1251
https://github.com/benoitc/gunicorn/issues/1178
https://github.com/benoitc/gunicorn/issues/1174
https://github.com/benoitc/gunicorn/issues/1173
https://github.com/benoitc/gunicorn/issues/1171
https://github.com/benoitc/gunicorn/issues/1095
https://github.com/benoitc/gunicorn/issues/1155
https://github.com/benoitc/gunicorn/issues/1156
https://github.com/benoitc/gunicorn/issues/1160
https://github.com/benoitc/gunicorn/issues/1157
https://github.com/benoitc/gunicorn/issues/1142

Gunicorn Documentation, Release 20.0.4

Testing

• fix: gaiohttp test (issue 1164)

19.4.1 / 2015/11/25

• fix tornado worker (issue 1154)

19.4.0 / 2015/11/20

Core

• fix: make sure that a user is able to access to the logs after dropping a privilege (issue 1116)

• improvement: inherit the Exception class where it needs to be (issue 997)

• fix: make sure headers are always encoded as latin1 RFC 2616 (issue 1102)

• improvement: reduce arbiter noise (issue 1078)

• fix: don’t close the unix socket when the worker exit (issue 1088)

• improvement: Make last logged worker count an explicit instance var (issue 1078)

• improvement: prefix config file with its type (issue 836)

• improvement: pidfile handing (issue 1042)

• fix: catch OSError as well as ValueError on race condition (issue 1052)

• improve support of ipv6 by backporting urlparse.urlsplit from Python 2.7 to Python 2.6.

• fix: raise InvalidRequestLine when the line contains malicious data (issue 1023)

• fix: fix argument to disable sendfile

• fix: add gthread to the list of supported workers (issue 1011)

• improvement: retry socket binding up to five times upon EADDRNOTAVAIL (issue 1004)

• breaking change: only honor headers that can be encoded in ascii to comply to the RFC 7230 (See issue 1151).

Logging

• add new parameters to access log (issue 1132)

• fix: make sure that files handles are correctly reopened on HUP (issue 627)

• include request URL in error message (issue 1071)

• get username in access logs (issue 1069)

• fix statsd logging support on Python 3 (issue 1010)

2.12. Changelog 55

https://github.com/benoitc/gunicorn/issues/1164
https://github.com/benoitc/gunicorn/issues/1154
https://github.com/benoitc/gunicorn/issues/1116
https://github.com/benoitc/gunicorn/issues/997
https://github.com/benoitc/gunicorn/issues/1102
https://github.com/benoitc/gunicorn/issues/1078
https://github.com/benoitc/gunicorn/issues/1088
https://github.com/benoitc/gunicorn/issues/1078
https://github.com/benoitc/gunicorn/issues/836
https://github.com/benoitc/gunicorn/issues/1042
https://github.com/benoitc/gunicorn/issues/1052
https://github.com/benoitc/gunicorn/issues/1023
https://github.com/benoitc/gunicorn/issues/1011
https://github.com/benoitc/gunicorn/issues/1004
https://github.com/benoitc/gunicorn/issues/1151
https://github.com/benoitc/gunicorn/issues/1132
https://github.com/benoitc/gunicorn/issues/627
https://github.com/benoitc/gunicorn/issues/1071
https://github.com/benoitc/gunicorn/issues/1069
https://github.com/benoitc/gunicorn/issues/1010

Gunicorn Documentation, Release 20.0.4

Testing

• use last version of mock.

• many fixes in Travis CI support

• miscellaneous improvements in tests

Thread worker

• fix: Fix self.nr usage in ThreadedWorker so that auto restart works as expected (issue 1031)

Gevent worker

• fix quit signal handling (issue 1128)

• add support for Python 3 (issue 1066)

• fix: make graceful shutdown thread-safe (issue 1032)

Tornado worker

• fix ssl options (issue 1146, issue 1135)

• don’t check timeout when stopping gracefully (issue 1106)

AIOHttp worker

• add SSL support (issue 1105)

Documentation

• fix link to proc name setting (issue 1144)

• fix worker class documentation (issue 1141, issue 1104)

• clarify graceful timeout documentation (issue 1137)

• don’t duplicate NGINX config files examples (issue 1050, issue 1048)

• add web.py framework example (issue 1117)

• update Debian/Ubuntu installations instructions (issue 1112)

• clarify pythonpath setting description (issue 1080)

• tweak some example for python3

• clarify sendfile documentation

• miscellaneous typos in source code comments (thanks!)

• clarify why REMOTE_ADD may not be the user’s IP address (issue 1037)

56 Chapter 2. Contents

https://github.com/benoitc/gunicorn/issues/1031
https://github.com/benoitc/gunicorn/issues/1128
https://github.com/benoitc/gunicorn/issues/1066
https://github.com/benoitc/gunicorn/issues/1032
https://github.com/benoitc/gunicorn/issues/1146
https://github.com/benoitc/gunicorn/issues/1135
https://github.com/benoitc/gunicorn/issues/1106
https://github.com/benoitc/gunicorn/issues/1105
https://github.com/benoitc/gunicorn/issues/1144
https://github.com/benoitc/gunicorn/issues/1141
https://github.com/benoitc/gunicorn/issues/1104
https://github.com/benoitc/gunicorn/issues/1137
https://github.com/benoitc/gunicorn/issues/1050
https://github.com/benoitc/gunicorn/issues/1048
https://github.com/benoitc/gunicorn/issues/1117
https://github.com/benoitc/gunicorn/issues/1112
https://github.com/benoitc/gunicorn/issues/1080
https://github.com/benoitc/gunicorn/issues/1037

Gunicorn Documentation, Release 20.0.4

Misc

• fix: reloader should survive SyntaxError (issue 994)

• fix: expose the reloader class to the worker.

19.3.0 / 2015/03/06

Core

• fix: issue 978 make sure a listener is inheritable

• add check_config class method to workers

• fix: issue 983 fix select timeout in sync worker with multiple connections

• allows workers to access to the reloader. close issue 984

• raise TypeError instead of AssertionError

Logging

• make Logger.loglevel a class attribute

Documentation

• fix: issue 988 fix syntax errors in examples/gunicorn_rc

19.2.1 / 2015/02/4

Logging

• expose loglevel in the Logger class

AsyncIO worker (gaiohttp)

• fix issue 977 fix initial crash

Documentation

• document security mailing-list in the contributing page.

19.2 / 2015/01/30

Core

• optimize the sync workers when listening on a single interface

• add –sendfile settings to enable/disable sendfile. fix issue 856 .

2.12. Changelog 57

https://github.com/benoitc/gunicorn/issues/994
https://github.com/benoitc/gunicorn/issues/978
https://github.com/benoitc/gunicorn/issues/983
https://github.com/benoitc/gunicorn/issues/984
https://github.com/benoitc/gunicorn/issues/988
https://github.com/benoitc/gunicorn/issues/977
https://github.com/benoitc/gunicorn/issues/856

Gunicorn Documentation, Release 20.0.4

• add the selectors module to the code base. issue 886

• add –max-requests-jitter setting to set the maximum jitter to add to the max-requests setting.

• fix issue 899 propagate proxy_protocol_info to keep-alive requests

• fix issue 863 worker timeout: dynamic timeout has been removed

• fix: Avoid world writable file

Logging

• fix issue 941 set logconfig default to paster more trivially

• add statsd-prefix config setting: set the prefix to use when emitting statsd metrics

• issue 832 log to console by default

Thread Worker

• fix issue 908 make sure the worker can continue to accept requests

Eventlet Worker

• fix issue 867 Fix eventlet shutdown to actively shut down the workers.

Documentation

Many improvements and fixes have been done, see the detailed changelog for more information.

Changelog - 2014

Note: Please see Changelog for the latest changes.

19.1.1 / 2014-08-16

Changes

Core

• fix issue 835: display correct pid of already running instance

• fix pull request 833: fix PyTest class in setup.py.

58 Chapter 2. Contents

https://github.com/benoitc/gunicorn/issues/886
https://github.com/benoitc/gunicorn/issues/899
https://github.com/benoitc/gunicorn/issues/863
https://github.com/benoitc/gunicorn/issues/941
https://github.com/benoitc/gunicorn/issues/832
https://github.com/benoitc/gunicorn/issues/908
https://github.com/benoitc/gunicorn/issues/867
https://github.com/benoitc/gunicorn/issues/835
https://github.com/benoitc/gunicorn/pull/833

Gunicorn Documentation, Release 20.0.4

Logging

• fix issue 838: statsd logger, send statsd timing metrics in milliseconds

• fix issue 839: statsd logger, allows for empty log message while pushing metrics and restore worker number in
DEBUG logs

• fix issue 850: add timezone to logging

• fix issue 853: Respect logger_class setting unless statsd is on

AioHttp worker

• fix issue 830 make sure gaiohttp worker is shipped with gunicorn.

19.1 / 2014-07-26

Changes

Core

• fix issue 785: handle binary type address given to a client socket address

• fix graceful shutdown. make sure QUIT and TERMS signals are switched everywhere.

• issue 799: fix support loading config from module

• issue 805: fix check for file-like objects

• fix issue 815: args validation in WSGIApplication.init

• fix issue 787: check if we load a pyc file or not.

Tornado worker

• fix issue 771: support tornado 4.0

• fix issue 783: x_headers error. The x-forwarded-headers option has been removed in
c4873681299212d6082cd9902740eef18c2f14f1. The discussion is available on pull request 633.

AioHttp worker

• fix: fetch all body in input. fix issue 803

• fix: don’t install the worker if python < 3.3

• fix issue 822: Support UNIX sockets in gaiohttp worker

Async worker

• fix issue 790: StopIteration shouldn’t be catched at this level.

2.12. Changelog 59

https://github.com/benoitc/gunicorn/issues/838
https://github.com/benoitc/gunicorn/issues/839
https://github.com/benoitc/gunicorn/issues/850
https://github.com/benoitc/gunicorn/issues/853
https://github.com/benoitc/gunicorn/issues/830
https://github.com/benoitc/gunicorn/issues/785
https://github.com/benoitc/gunicorn/issues/799
https://github.com/benoitc/gunicorn/issues/805
https://github.com/benoitc/gunicorn/issues/815
https://github.com/benoitc/gunicorn/issues/787
https://github.com/benoitc/gunicorn/issues/771
https://github.com/benoitc/gunicorn/issues/783
https://github.com/benoitc/gunicorn/commit/c4873681299212d6082cd9902740eef18c2f14f1
https://github.com/benoitc/gunicorn/pull/633
https://github.com/benoitc/gunicorn/issues/803
https://github.com/benoitc/gunicorn/issues/822
https://github.com/benoitc/gunicorn/issues/790

Gunicorn Documentation, Release 20.0.4

Logging

• add statsd logging handler fix issue 748

Paster

• fix issue 809: Set global logging configuration from a Paste config.

Extra

• fix RuntimeError in gunicorn.reloader (issue 807)

Documentation

• update faq: put a note on how watch logs in the console since many people asked for it.

19.0 / 2014-06-12

Gunicorn 19.0 is a major release with new features and fixes. This version improve a lot the usage of Gunicorn with
python 3 by adding two new workers to it: gthread a fully threaded async worker using futures and gaiohttp a worker
using asyncio.

Breaking Changes

Switch QUIT and TERM signals

With this change, when gunicorn receives a QUIT all the workers are killed immediately and exit and TERM is used
for the graceful shutdown.

Note: the old behaviour was based on the NGINX but the new one is more correct according the following doc:

https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html

also it is complying with the way the signals are sent by heroku:

https://devcenter.heroku.com/articles/python-faq#what-constraints-exist-when-developing-applications-on-heroku

Deprecations

run_gunicorn, gunicorn_django and gunicorn_paster are now completely deprecated and will be removed in the next
release. Use the gunicorn command instead.

Changes

core

• add aiohttp worker named gaiohttp using asyncio. Full async worker on python 3.

• fix HTTP-violating excess whitespace in write_error output

60 Chapter 2. Contents

https://github.com/benoitc/gunicorn/issues/748
https://github.com/benoitc/gunicorn/issues/809
https://github.com/benoitc/gunicorn/issues/807
http://docs.gunicorn.org/en/latest/faq.html#why-i-don-t-see-any-logs-in-the-console
http://docs.gunicorn.org/en/latest/design.html#asyncio-workers
https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html
https://devcenter.heroku.com/articles/python-faq#what-constraints-exist-when-developing-applications-on-heroku

Gunicorn Documentation, Release 20.0.4

• fix: try to log what happened in the worker after a timeout, add a worker_abort hook on SIGABRT signal.

• fix: save listener socket name in workers so we can handle buffered keep-alive requests after the listener has
closed.

• add on_exit hook called just before exiting gunicorn.

• add support for python 3.4

• fix: do not swallow unexpected errors when reaping

• fix: remove incompatible SSL option with python 2.6

• add new async gthread worker and –threads options allows to set multiple threads to listen on connection

• deprecate gunicorn_django and gunicorn_paster

• switch QUIT and TERM signal

• reap workers in SIGCHLD handler

• add universal wheel support

• use email.utils.formatdate in gunicorn.util.http_date

• deprecate the –debug option

• fix: log exceptions that occur after response start . . .

• allows loading of applications from .pyc files (#693)

• fix: issue #691, raw_env config file parsing

• use a dynamic timeout to wait for the optimal time. (Reduce power usage)

• fix python3 support when notifying the arbiter

• add: honor $WEB_CONCURRENCY environment variable. Useful for heroku setups.

• add: include tz offset in access log

• add: include access logs in the syslog handler.

• add –reload option for code reloading

• add the capability to load gunicorn.base.Application without the loading of the arguments of the command line.
It allows you to embed gunicorn in your own application.

• improve: set wsgi.multithread to True for async workers

• fix logging: make sure to redirect wsgi.errors when needed

• add: syslog logging can now be done to a unix socket

• fix logging: don’t try to redirect stdout/stderr to the logfile.

• fix logging: don’t propagate log

• improve logging: file option can be overriden by the gunicorn options –error-logfile and –access-logfile if they
are given.

• fix: don’t override SERVER_* by the Host header

• fix: handle_error

• add more option to configure SSL

• fix: sendfile with SSL

• add: worker_int callback (to react on SIGTERM)

2.12. Changelog 61

Gunicorn Documentation, Release 20.0.4

• fix: don’t depend on entry point for internal classes, now absolute modules path can be given.

• fix: Error messages are now encoded in latin1

• fix: request line length check

• improvement: proxy_allow_ips: Allow proxy protocol if “*” specified

• fix: run worker’s setup method before setting num_workers

• fix: FileWrapper inherit from object now

• fix: Error messages are now encoded in latin1

• fix: don’t spam the console on SIGWINCH.

• fix: logging -don’t stringify T and D logging atoms (#621)

• add support for the latest django version

• deprecate run_gunicorn django option

• fix: sys imported twice

gevent worker

• fix: make sure to stop all listeners

• fix: monkey patching is now done in the worker

• fix: “global name ‘hub’ is not defined”

• fix: reinit hub on old versions of gevent

• support gevent 1.0

• fix: add subprocess in monkey patching

• fix: add support for multiple listener

eventlet worker

• fix: merge duplicate EventletWorker.init_process method (fixes #657)

• fix: missing errno import for eventlet sendfile patch

• fix: add support for multiple listener

tornado worker

• add graceful stop support

Changelog - 2013

18.0 / 2013-08-26

• new: add -e/--env command line argument to pass an environment variables to gunicorn

• new: add --chdir command line argument to specified directory before apps loading. - new: add
wsgi.file_wrapper support in async workers

62 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

• new: add --paste command line argument to set the paster config file

• deprecated: the command gunicorn_django is now deprecated. You should now run your application with
the WSGI interface installed with your project (see https://docs.djangoproject.com/en/1.4/howto/deployment/
wsgi/gunicorn/) for more infos.

• deprecated: the command gunicorn_paste is deprecated. You now should use the new --paste argument
to set the configuration file of your paster application.

• fix: Removes unmatched leading quote from the beginning of the default access log format string

• fix: null timeout

• fix: gevent worker

• fix: don’t reload the paster app when using pserve

• fix: after closing for error do not keep alive the connection

• fix: responses 1xx, 204 and 304 should not force the connection to be closed

17.5 / 2013-07-03

• new: add signals documentation

• new: add post_worker_init hook for workers

• new: try to use gunicorn.conf.py in current folder as the default config file.

• fix graceful timeout with the Eventlet worker

• fix: don’t raise an error when closing the socket if already closed

• fix: fix –settings parameter for django application and try to find the django settings when using the gunicorn
command.

• fix: give the initial global_conf to paster application

• fix: fix ‘Expect: 100-continue’ support on Python 3

New versionning:

With this release, the versionning of Gunicorn is changing. Gunicorn is stable since a long time and there is no point
to release a “1.0” now. It should have been done since a long time. 0.17 really meant it was the 17th stable version.
From the beginning we have only 2 kind of releases:

major release: releases with major changes or huge features added services releases: fixes and minor features added So
from now we will apply the following versionning <major>.<service>. For example 17.5 is a service release.

0.17.4 / 2013-04-24

• fix unix socket address parsing

0.17.3 / 2013-04-23

• add systemd sockets support

• add python -m gunicorn.app.wsgiapp support

2.12. Changelog 63

https://docs.djangoproject.com/en/1.4/howto/deployment/wsgi/gunicorn/
https://docs.djangoproject.com/en/1.4/howto/deployment/wsgi/gunicorn/

Gunicorn Documentation, Release 20.0.4

• improve logger class inheritance

• exit when the config file isn’t found

• add the -R option to enable stdio inheritance in daemon mode

• don’t close file descriptors > 3 in daemon mode

• improve STDOUT/STDERR logging

• fix pythonpath option

• fix pidfile creation on Python 3

• fix gevent worker exit

• fix ipv6 detection when the platform isn’t supporting it

0.17.2 / 2013-01-07

• optimize readline

• make imports errors more visible when loading an app or a logging class

• fix tornado worker: don’t pass ssl options if there are none

• fix PEP3333: accept only bytetrings in the response body

• fix support on CYGWIN platforms

0.17.1 / 2013-01-05

• add syslog facility name setting

• fix --version command line argument

• fix wsgi url_scheme for https

Changelog - 2012

0.17.0 / 2012-12-25

• allows gunicorn to bind to multiple address

• add SSL support

• add syslog support

• add nworkers_changed hook

• add response arg for post_request hook

• parse command line with argparse (replace deprecated optparse)

• fix PWD detection in arbiter

• miscellaneous PEP8 fixes

64 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

0.16.1 / 2012-11-19

• Fix packaging

0.16.0 / 2012-11-19

• Added support for Python 3.2 & 3.3

• Expose –pythonpath command to all gunicorn commands

• Honor $PORT environment variable, useful for deployment on heroku

• Removed support for Python 2.5

• Make sure we reopen the logs on the console

• Fix django settings module detection from path

• Reverted timeout for client socket. Fix issue on blocking issues.

• Fixed gevent worker

0.15.0 / 2012-10-18

• new documentation site on http://docs.gunicorn.org

• new website on http://gunicorn.org

• add haproxy PROXY protocol support

• add ForwardedAllowIPS option: allows to filter Front-end’s IPs allowed to handle X-Forwarded-* headers.

• add callable hooks for paster config

• add x-forwarded-proto as secure scheme default (Heroku is using this)

• allows gunicorn to load a pre-compiled application

• support file reopening & reexec for all loggers

• initialize the logging config file with defaults.

• set timeout for client socket (slow client DoS).

• NoMoreData, ChunkMissingTerminator, InvalidChunkSize are now IOError exceptions

• fix graceful shutdown in gevent

• fix limit request line check

0.14.6 / 2012-07-26

• fix gevent & subproces

• fix request line length check

• fix keepalive = 0

• fix tornado worker

2.12. Changelog 65

http://docs.gunicorn.org
http://gunicorn.org
http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

Gunicorn Documentation, Release 20.0.4

0.14.5 / 2012-06-24

• fix logging during daemonisation

0.14.4 / 2012-06-24

• new –graceful-timeout option

• fix multiple issues with request limit

• more fixes in django settings resolutions

• fix gevent.core import

• fix keepalive=0 in eventlet worker

• fix handle_error display with the unix worker

• fix tornado.wsgi.WSGIApplication calling error

• breaking change: take the control on graceful reload back. graceful can’t be overrided anymore using the
on_reload function.

0.14.3 / 2012-05-15

• improvement: performance of http.body.Body.readline()

• improvement: log HTTP errors in access log like Apache

• improvement: display traceback when the worker fails to boot

• improvement: makes gunicorn work with gevent 1.0

• examples: websocket example now supports hybi13

• fix: reopen log files after initialization

• fix: websockets support

• fix: django1.4 support

• fix: only load the paster application 1 time

0.14.2 / 2012-03-16

• add validate_class validator: allows to use a class or a method to initialize the app during in-code configuration

• add support for max_requests in tornado worker

• add support for disabling x_forwarded_for_header in tornado worker

• gevent_wsgi is now an alias of gevent_pywsgi

• Fix gevent_pywsgi worker

0.14.1 / 2012-03-02

• fixing source archive, reducing its size

66 Chapter 2. Contents

Gunicorn Documentation, Release 20.0.4

0.14.0 / 2012-02-27

• check if Request line is too large: You can now pass the parameter --limit-request-line or set the
limit_request_line in your configuration file to set the max size of the request line in bytes.

• limit the number of headers fields and their size. Add --limit-request-field and
limit-request-field-size settings

• add p variable to the log access format to log pidfile

• add {HeaderName}o variable to the logo access format to log the response header HeaderName

• request header is now logged with the variable {HeaderName}i in the access log file

• improve error logging

• support logging.configFile

• support django 1.4 in both gunicorn_django & run_gunicorn command

• improve reload in django run_gunicorn command (should just work now)

• allows people to set the X-Forwarded-For header key and disable it by setting an empty string.

• fix support of Tornado

• many other fixes.

Changelog - 2011

0.13.4 / 2011-09-23

• fix util.closerange function used to prevent leaking fds on python 2.5 (typo)

0.13.3 / 2011-09-19

• refactor gevent worker

• prevent leaking fds on reexec

• fix inverted request_time computation

0.13.2 / 2011-09-17

• Add support for Tornado 2.0 in tornado worker

• Improve access logs: allows customisation of the log format & add request time

• Logger module is now pluggable

• Improve graceful shutdown in Python versions >= 2.6

• Fix post_request root arity for compatibility

• Fix sendfile support

• Fix Django reloading

2.12. Changelog 67

Gunicorn Documentation, Release 20.0.4

0.13.1 / 2011-08-22

• Fix unix socket. log argument was missing.

0.13.0 / 2011-08-22

• Improve logging: allows file-reopening and add access log file compatible with the apache combined log format

• Add the possibility to set custom SSL headers. X-Forwarded-Protocol and X-Forwarded-SSL are still the default

• New on_reload hook to customize how gunicorn spawn new workers on SIGHUP

• Handle projects with relative path in django_gunicorn command

• Preserve path parameters in PATH_INFO

• post_request hook now accepts the environ as argument.

• When stopping the arbiter, close the listener asap.

• Fix Django command run_gunicorn in settings reloading

• Fix Tornado worker exiting

• Fix the use of sendfile in wsgi.file_wrapper

0.12.2 / 2011-05-18

• Add wsgi.file_wrapper optimised for FreeBSD, Linux & MacOSX (use sendfile if available)

• Fix django run_gunicorn command. Make sure we reload the application code.

• Fix django localisation

• Compatible with gevent 0.14dev

0.12.1 / 2011-03-23

• Add “on_starting” hook. This hook can be used to set anything before the arbiter really start

• Support bdist_rpm in setup

• Improve content-length handling (pep 3333)

• Improve Django support

• Fix daemonizing (#142)

• Fix ipv6 handling

Changelog - 2010

0.12.0 / 2010-12-22

• Add support for logging configuration using a ini file. It uses the standard Python logging’s module Configura-
tion file format and allows anyone to use his custom file handler

• Add IPV6 support

68 Chapter 2. Contents

http://httpd.apache.org/docs/2.0/logs.html#combined
http://www.tornadoweb.org/

Gunicorn Documentation, Release 20.0.4

• Add multidomain application example

• Improve gunicorn_django command when importing settings module using DJANGO_SETTINGS_MODULE
environment variable

• Send appropriate error status on http parsing

• Fix pidfile, set permissions so other user can read it and use it.

• Fix temporary file leaking

• Fix setpgrp issue, can now be launched via ubuntu upstart

• Set the number of workers to zero on WINCH

0.11.2 / 2010-10-30

• Add SERVER_SOFTWARE to the os.environ

• Add support for django settings environment variable

• Add support for logging configuration in Paster ini-files

• Improve arbiter notification in asynchronous workers

• Display the right error when a worker can’t be used

• Fix Django support

• Fix HUP with Paster applications

• Fix readline in wsgi.input

0.11.1 / 2010-09-02

• Implement max-requests feature to prevent memory leaks.

• Added ‘worker_exit’ server hook.

• Reseed the random number generator after fork().

• Improve Eventlet worker.

• Fix Django command run_gunicorn.

• Fix the default proc name internal setting.

• Workaround to prevent Gevent worker to segfault on MacOSX.

0.11.0 / 2010-08-12

• Improve dramatically performances of Gevent and Eventlet workers

• Optimize HTTP parsing

• Drop Server and Date headers in start_response when provided.

• Fix latency issue in async workers

2.12. Changelog 69

Gunicorn Documentation, Release 20.0.4

0.10.1 / 2010-08-06

• Improve gevent’s workers. Add “egg:gunicorn#gevent_wsgi” worker using gevent.wsgi and
“egg:gunicorn#gevent_pywsgi” worker using gevent.pywsgi . “egg:gunicorn#gevent” using our own
HTTP parser is still here and is recommended for normal uses. Use the “gevent.wsgi” parser if you need really
fast connections and don’t need streaming, keepalive or ssl.

• Add pre/post request hooks

• Exit more quietly

• Fix gevent dns issue

0.10.0 / 2010-07-08

• New HTTP parser.

• New HUP behaviour. Re-reads the configuration and then reloads all worker processes without changing the
master process id. Helpful for code reloading and monitoring applications like supervisord and runit.

• Added a preload configuration parameter. By default, application code is now loaded after a worker forks. This
couple with the new HUP handling can be used for dev servers to do hot code reloading. Using the preload flag
can help a bit in small memory VM’s.

• Allow people to pass command line arguments to WSGI applications. See: examples/alt_spec.py

• Added an example gevent reloader configuration: examples/example_gevent_reloader.py.

• New gevent worker “egg:gunicorn#gevent2”, working with gevent.wsgi.

• Internal refactoring and various bug fixes.

• New documentation website.

0.9.1 / 2010-05-26

• Support https via X-Forwarded-Protocol or X-Forwarded-Ssl headers

• Fix configuration

• Remove -d options which was used instead of -D for daemon.

• Fix umask in unix socket

0.9.0 / 2010-05-24

• Added when_ready hook. Called just after the server is started

• Added preload setting. Load application code before the worker processes are forked.

• Refactored Config

• Fix pidfile

• Fix QUIT/HUP in async workers

• Fix reexec

• Documentation improvements

70 Chapter 2. Contents

http://www.gevent.org/gevent.wsgi.html
http://www.gevent.org/gevent.pywsgi.html
http://github.com/benoitc/gunicorn/raw/master/examples/alt_spec.py
http://github.com/benoitc/gunicorn/blob/master/examples/example_gevent_reloader.py

Gunicorn Documentation, Release 20.0.4

0.8.1 / 2010-04-29

• Fix builtins import in config

• Fix installation with pip

• Fix Tornado WSGI support

• Delay application loading until after processing all configuration

0.8.0 / 2010-04-22

• Refactored Worker management for better async support. Now use the -k option to set the type of request
processing to use

• Added support for Tornado

0.7.2 / 2010-04-15

• Added –spew option to help debugging (installs a system trace hook)

• Some fixes in async arbiters

• Fix a bug in start_response on error

0.7.1 / 2010-04-01

• Fix bug when responses have no body.

0.7.0 / 2010-03-26

• Added support for Eventlet and Gevent based workers.

• Added Websockets support

• Fix Chunked Encoding

• Fix SIGWINCH on OpenBSD

• Fix PEP 333 compliance for the write callable.

0.6.5 / 2010-03-11

• Fix pidfile handling

• Fix Exception Error

0.6.4 / 2010-03-08

• Use cStringIO for performance when possible.

• Fix worker freeze when a remote connection closes unexpectedly.

2.12. Changelog 71

http://www.tornadoweb.org/
http://eventlet.net/
http://www.gevent.org/
https://html.spec.whatwg.org/multipage/web-sockets.html
https://www.openbsd.org/
https://www.python.org/dev/peps/pep-0333/

Gunicorn Documentation, Release 20.0.4

0.6.3 / 2010-03-07

• Make HTTP parsing faster.

• Various bug fixes

0.6.2 / 2010-03-01

• Added support for chunked response.

• Added proc_name option to the config file.

• Improved the HTTP parser. It now uses buffers instead of strings to store temporary data.

• Improved performance when sending responses.

• Workers are now murdered by age (the oldest is killed first).

0.6.1 / 2010-02-24

• Added gunicorn config file support for Django admin command

• Fix gunicorn config file. -c was broken.

• Removed TTIN/TTOU from workers which blocked other signals.

0.6.0 / 2010-02-22

• Added setproctitle support

• Change privilege switch behavior. We now work like NGINX, master keeps the permissions, new uid/gid
permissions are only set for workers.

0.5.1 / 2010-02-22

• Fix umask

• Added Debian packaging

0.5.0 / 2010-02-20

• Added configuration file handler.

• Added support for pre/post fork hooks

• Added support for before_exec hook

• Added support for unix sockets

• Added launch of workers processes under different user/group

• Added umask option

• Added SCRIPT_NAME support

• Better support of some exotic settings for Django projects

72 Chapter 2. Contents

configuration.html

Gunicorn Documentation, Release 20.0.4

• Better support of Paste-compatible applications

• Some refactoring to make the code easier to hack

• Allow multiple keys in request and response headers

2.12. Changelog 73

Gunicorn Documentation, Release 20.0.4

74 Chapter 2. Contents

Index

R
RFC

RFC 3875, 33

75

	Features
	Contents
	Installation
	Running Gunicorn
	Configuration Overview
	Settings
	Instrumentation
	Deploying Gunicorn
	Signal Handling
	Custom Application
	Design
	FAQ
	Community
	Changelog

	Index

