

Gunicorn - WSGI server

[image: _images/gunicorn.png]

	Website

	http://gunicorn.org

	Source code

	https://github.com/benoitc/gunicorn

	Issue tracker

	https://github.com/benoitc/gunicorn/issues

	IRC

	#gunicorn on Freenode

	Usage questions

	https://github.com/benoitc/gunicorn/issues

Gunicorn ‘Green Unicorn’ is a Python WSGI HTTP Server for UNIX. It’s a pre-fork
worker model ported from Ruby’s Unicorn project. The Gunicorn server is broadly
compatible with various web frameworks, simply implemented, light on server
resources, and fairly speedy.

Features

	Natively supports WSGI, Django, and Paster

	Automatic worker process management

	Simple Python configuration

	Multiple worker configurations

	Various server hooks for extensibility

	Compatible with Python 2.x >= 2.6 or 3.x >= 3.2

Contents

	Installation
	From Source

	Async Workers

	Debian GNU/Linux

	Ubuntu

	Running Gunicorn
	Commands

	Integration

	Configuration Overview
	Command Line

	Configuration File

	Framework Settings

	Settings
	Config File

	Debugging

	Logging

	Process Naming

	SSL

	Security

	Server Hooks

	Server Mechanics

	Server Socket

	Worker Processes

	Instrumentation

	Deploying Gunicorn
	Nginx Configuration

	Using Virtualenv

	Monitoring

	Logging

	Signal Handling
	Master process

	Worker process

	Reload the configuration

	Upgrading to a new binary on the fly

	Custom Application

	Design
	Server Model

	Choosing a Worker Type

	How Many Workers?

	How Many Threads?

	FAQ
	WSGI Bits

	Server Stuff

	Worker Processes

	Kernel Parameters

	Troubleshooting

	Community
	Project Management & Discussions

	IRC

	Issue Tracking

	Security Issues

	Changelog
	19.9.0 / 2018/07/03

	19.8.1 / 2018/04/30

	19.8.0 / 2018/04/28

	History

Installation

	Requirements

	Python 2.x >= 2.6 or Python 3.x >= 3.2

To install the latest released version of Gunicorn:

$ pip install gunicorn

From Source

You can install Gunicorn from source just as you would install any other
Python package:

$ pip install git+https://github.com/benoitc/gunicorn.git

This will allow you to keep up to date with development on GitHub:

$ pip install -U git+https://github.com/benoitc/gunicorn.git

Async Workers

You may also want to install Eventlet [http://eventlet.net] or Gevent [http://www.gevent.org/] if you expect that your
application code may need to pause for extended periods of time during request
processing. Check out the design docs for more information on when you’ll
want to consider one of the alternate worker types.

$ pip install greenlet # Required for both
$ pip install eventlet # For eventlet workers
$ pip install gunicorn[eventlet] # Or, using extra
$ pip install gevent # For gevent workers
$ pip install gunicorn[gevent] # Or, using extra

Note

Both require greenlet, which should get installed automatically,
If its installation fails, you probably need to install
the Python headers. These headers are available in most package
managers. On Ubuntu the package name for apt-get is
python-dev.

Gevent [http://www.gevent.org/] also requires that libevent 1.4.x or 2.0.4 is installed.
This could be a more recent version than what is available in your
package manager. If Gevent [http://www.gevent.org/] fails to build even with libevent [http://libevent.org/]
installed, this is the most likely reason.

Debian GNU/Linux

If you are using Debian GNU/Linux and it is recommended that you use
system packages to install Gunicorn except maybe when you want to use
different versions of Gunicorn with virtualenv. This has a number of
advantages:

	Zero-effort installation: Automatically starts multiple Gunicorn instances
based on configurations defined in /etc/gunicorn.d.

	Sensible default locations for logs (/var/log/gunicorn). Logs
can be automatically rotated and compressed using logrotate.

	Improved security: Can easily run each Gunicorn instance with a dedicated
UNIX user/group.

	Sensible upgrade path: Upgrades to newer versions result in less downtime,
handle conflicting changes in configuration options, and can be quickly
rolled back in case of incompatibility. The package can also be purged
entirely from the system in seconds.

stable (“stretch”)

The version of Gunicorn in the Debian [https://www.debian.org/] “stable” distribution is 19.6.0 (June
2017). You can install it using:

$ sudo apt-get install gunicorn

You can also use the most recent version by using Debian Backports [https://backports.debian.org/].
First, copy the following line to your /etc/apt/sources.list:

deb http://ftp.debian.org/debian stretch-backports main

Then, update your local package lists:

$ sudo apt-get update

You can then install the latest version using:

$ sudo apt-get -t stretch-backports install gunicorn

oldstable (“jessie”)

The version of Gunicorn in the Debian [https://www.debian.org/] “oldstable” distribution is 19.0 (June
2014). you can install it using:

$ sudo apt-get install gunicorn

You can also use the most recent version by using Debian Backports [https://backports.debian.org/].
First, copy the following line to your /etc/apt/sources.list:

deb http://ftp.debian.org/debian jessie-backports main

Then, update your local package lists:

$ sudo apt-get update

You can then install the latest version using:

$ sudo apt-get -t jessie-backports install gunicorn

Testing (“buster”) / Unstable (“sid”)

“buster” and “sid” contain the latest released version of Gunicorn. You can
install it in the usual way:

$ sudo apt-get install gunicorn

Ubuntu

Ubuntu [https://www.ubuntu.com/] 12.04 (trusty) or later contains Gunicorn package by default so that
you can install it in the usual way:

$ sudo apt-get update
$ sudo apt-get install gunicorn

Running Gunicorn

You can run Gunicorn by using commands or integrate with Django or Paster. For
deploying Gunicorn in production see Deploying Gunicorn.

Commands

After installing Gunicorn you will have access to the command line script
gunicorn.

gunicorn

Basic usage:

$ gunicorn [OPTIONS] APP_MODULE

Where APP_MODULE is of the pattern $(MODULE_NAME):$(VARIABLE_NAME). The
module name can be a full dotted path. The variable name refers to a WSGI
callable that should be found in the specified module.

Example with the test app:

def app(environ, start_response):
 """Simplest possible application object"""
 data = b'Hello, World!\n'
 status = '200 OK'
 response_headers = [
 ('Content-type', 'text/plain'),
 ('Content-Length', str(len(data)))
]
 start_response(status, response_headers)
 return iter([data])

You can now run the app with the following command:

$ gunicorn --workers=2 test:app

Commonly Used Arguments

	-c CONFIG, --config=CONFIG - Specify a config file in the form
$(PATH), file:$(PATH), or python:$(MODULE_NAME).

	-b BIND, --bind=BIND - Specify a server socket to bind. Server sockets
can be any of $(HOST), $(HOST):$(PORT), or unix:$(PATH).
An IP is a valid $(HOST).

	-w WORKERS, --workers=WORKERS - The number of worker processes. This
number should generally be between 2-4 workers per core in the server.
Check the FAQ for ideas on tuning this parameter.

	-k WORKERCLASS, --worker-class=WORKERCLASS - The type of worker process
to run. You’ll definitely want to read the production page for the
implications of this parameter. You can set this to $(NAME)
where $(NAME) is one of sync, eventlet, gevent,
tornado, gthread, gaiohttp (deprecated).
sync is the default. See the worker_class documentation for more
information.

	-n APP_NAME, --name=APP_NAME - If setproctitle [https://pypi.python.org/pypi/setproctitle] is installed you can
adjust the name of Gunicorn process as they appear in the process system
table (which affects tools like ps and top).

Settings can be specified by using environment variable
GUNICORN_CMD_ARGS.

See Configuration Overview and Settings for detailed usage.

Integration

We also provide integration for both Django and Paster applications.

Django

Gunicorn will look for a WSGI callable named application if not specified.
So for a typical Django project, invoking Gunicorn would look like:

$ gunicorn myproject.wsgi

Note

This requires that your project be on the Python path; the simplest way to
ensure that is to run this command from the same directory as your
manage.py file.

You can use the
–env [http://docs.gunicorn.org/en/latest/settings.html#raw-env] option
to set the path to load the settings. In case you need it you can also
add your application path to PYTHONPATH using the
–pythonpath [http://docs.gunicorn.org/en/latest/settings.html#pythonpath]
option:

$ gunicorn --env DJANGO_SETTINGS_MODULE=myproject.settings myproject.wsgi

Paste

If you are a user/developer of a paste-compatible framework/app (as
Pyramid, Pylons and Turbogears) you can use the
–paste [http://docs.gunicorn.org/en/latest/settings.html#paste] option
to run your application.

For example:

$ gunicorn --paste development.ini -b :8080 --chdir /path/to/project

Or use a different application:

$ gunicorn --paste development.ini#admin -b :8080 --chdir /path/to/project

It is all here. No configuration files nor additional Python modules to write!

Configuration Overview

Gunicorn pulls configuration information from three distinct places.

The first place that Gunicorn will read configuration from is the framework
specific configuration file. Currently this only affects Paster applications.

The second source of configuration information is a configuration file that is
optionally specified on the command line. Anything specified in the Gunicorn
config file will override any framework specific settings.

Lastly, the command line arguments used to invoke Gunicorn are the final place
considered for configuration settings. If an option is specified on the command
line, this is the value that will be used.

	Once again, in order of least to most authoritative:

	
	Framework Settings

	Configuration File

	Command Line

Note

To check your configuration when using the command line or the
configuration file you can run the following command:

$ gunicorn --check-config APP_MODULE

It also allows you to know if your application can be launched.

Command Line

If an option is specified on the command line, it overrides all other values
that may have been specified in the app specific settings, or in the optional
configuration file. Not all Gunicorn settings are available to be set from the
command line. To see the full list of command line settings you can do the
usual:

$ gunicorn -h

There is also a --version flag available to the command line scripts that
isn’t mentioned in the list of settings.

Configuration File

The configuration file should be a valid Python source file. It only needs to
be readable from the file system. More specifically, it does not need to be
importable. Any Python is valid. Just consider that this will be run every time
you start Gunicorn (including when you signal Gunicorn to reload).

To set a parameter, just assign to it. There’s no special syntax. The values
you provide will be used for the configuration values.

For instance:

import multiprocessing

bind = "127.0.0.1:8000"
workers = multiprocessing.cpu_count() * 2 + 1

All the settings are mentioned in the settings list.

Framework Settings

Currently, only Paster applications have access to framework specific
settings. If you have ideas for providing settings to WSGI applications or
pulling information from Django’s settings.py feel free to open an issue [https://github.com/benoitc/gunicorn/issues] to
let us know.

Paster Applications

In your INI file, you can specify to use Gunicorn as the server like such:

[server:main]
use = egg:gunicorn#main
host = 192.168.0.1
port = 80
workers = 2
proc_name = brim

Any parameters that Gunicorn knows about will automatically be inserted into
the base configuration. Remember that these will be overridden by the config
file and/or the command line.

Settings

This is an exhaustive list of settings for Gunicorn. Some settings are only
able to be set from a configuration file. The setting name is what should be
used in the configuration file. The command line arguments are listed as well
for reference on setting at the command line.

Note

Settings can be specified by using environment variable
GUNICORN_CMD_ARGS. All available command line arguments can be used.
For example, to specify the bind address and number of workers:

$ GUNICORN_CMD_ARGS="--bind=127.0.0.1 --workers=3" gunicorn app:app

New in version 19.7.

Config File

config

	-c CONFIG, --config CONFIG

	None

The Gunicorn config file.

A string of the form PATH, file:PATH, or python:MODULE_NAME.

Only has an effect when specified on the command line or as part of an
application specific configuration.

Changed in version 19.4: Loading the config from a Python module requires the python:
prefix.

Debugging

reload

	--reload

	False

Restart workers when code changes.

This setting is intended for development. It will cause workers to be
restarted whenever application code changes.

The reloader is incompatible with application preloading. When using a
paste configuration be sure that the server block does not import any
application code or the reload will not work as designed.

The default behavior is to attempt inotify with a fallback to file
system polling. Generally, inotify should be preferred if available
because it consumes less system resources.

Note

In order to use the inotify reloader, you must have the inotify
package installed.

reload_engine

	--reload-engine STRING

	auto

The implementation that should be used to power reload.

Valid engines are:

	‘auto’

	‘poll’

	‘inotify’ (requires inotify)

New in version 19.7.

reload_extra_files

	--reload-extra-file FILES

	[]

Extends reload option to also watch and reload on additional files
(e.g., templates, configurations, specifications, etc.).

New in version 19.8.

spew

	--spew

	False

Install a trace function that spews every line executed by the server.

This is the nuclear option.

check_config

	--check-config

	False

Check the configuration.

Logging

accesslog

	--access-logfile FILE

	None

The Access log file to write to.

'-' means log to stdout.

disable_redirect_access_to_syslog

	--disable-redirect-access-to-syslog

	False

Disable redirect access logs to syslog.

New in version 19.8.

access_log_format

	--access-logformat STRING

	%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s"

The access log format.

	Identifier

	Description

	h

	remote address

	l

	'-'

	u

	user name

	t

	date of the request

	r

	status line (e.g. GET / HTTP/1.1)

	m

	request method

	U

	URL path without query string

	q

	query string

	H

	protocol

	s

	status

	B

	response length

	b

	response length or '-' (CLF format)

	f

	referer

	a

	user agent

	T

	request time in seconds

	D

	request time in microseconds

	L

	request time in decimal seconds

	p

	process ID

	{Header}i

	request header

	{Header}o

	response header

	{Variable}e

	environment variable

errorlog

	--error-logfile FILE, --log-file FILE

	-

The Error log file to write to.

Using '-' for FILE makes gunicorn log to stderr.

Changed in version 19.2: Log to stderr by default.

loglevel

	--log-level LEVEL

	info

The granularity of Error log outputs.

Valid level names are:

	debug

	info

	warning

	error

	critical

capture_output

	--capture-output

	False

Redirect stdout/stderr to specified file in errorlog.

New in version 19.6.

logger_class

	--logger-class STRING

	gunicorn.glogging.Logger

The logger you want to use to log events in Gunicorn.

The default class (gunicorn.glogging.Logger) handle most of
normal usages in logging. It provides error and access logging.

You can provide your own logger by giving Gunicorn a
Python path to a subclass like gunicorn.glogging.Logger.

logconfig

	--log-config FILE

	None

The log config file to use.
Gunicorn uses the standard Python logging module’s Configuration
file format.

logconfig_dict

	--log-config-dict

	{}

The log config dictionary to use, using the standard Python
logging module’s dictionary configuration format. This option
takes precedence over the logconfig option, which uses the
older file configuration format.

Format: https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

New in version 19.8.

syslog_addr

	--log-syslog-to SYSLOG_ADDR

	udp://localhost:514

Address to send syslog messages.

Address is a string of the form:

	unix://PATH#TYPE : for unix domain socket. TYPE can be stream
for the stream driver or dgram for the dgram driver.
stream is the default.

	udp://HOST:PORT : for UDP sockets

	tcp://HOST:PORT : for TCP sockets

syslog

	--log-syslog

	False

Send Gunicorn logs to syslog.

Changed in version 19.8: You can now disable sending access logs by using the
disable_redirect_access_to_syslog setting.

syslog_prefix

	--log-syslog-prefix SYSLOG_PREFIX

	None

Makes Gunicorn use the parameter as program-name in the syslog entries.

All entries will be prefixed by gunicorn.<prefix>. By default the
program name is the name of the process.

syslog_facility

	--log-syslog-facility SYSLOG_FACILITY

	user

Syslog facility name

enable_stdio_inheritance

	-R, --enable-stdio-inheritance

	False

Enable stdio inheritance.

Enable inheritance for stdio file descriptors in daemon mode.

Note: To disable the Python stdout buffering, you can to set the user
environment variable PYTHONUNBUFFERED .

statsd_host

	--statsd-host STATSD_ADDR

	None

host:port of the statsd server to log to.

New in version 19.1.

statsd_prefix

	--statsd-prefix STATSD_PREFIX

	(empty string)

Prefix to use when emitting statsd metrics (a trailing . is added,
if not provided).

New in version 19.2.

Process Naming

proc_name

	-n STRING, --name STRING

	None

A base to use with setproctitle for process naming.

This affects things like ps and top. If you’re going to be
running more than one instance of Gunicorn you’ll probably want to set a
name to tell them apart. This requires that you install the setproctitle
module.

If not set, the default_proc_name setting will be used.

default_proc_name

	gunicorn

Internal setting that is adjusted for each type of application.

SSL

keyfile

	--keyfile FILE

	None

SSL key file

certfile

	--certfile FILE

	None

SSL certificate file

ssl_version

	--ssl-version

	_SSLMethod.PROTOCOL_TLS

SSL version to use (see stdlib ssl module’s)

Changed in version 19.7: The default value has been changed from ssl.PROTOCOL_TLSv1 to
ssl.PROTOCOL_SSLv23.

cert_reqs

	--cert-reqs

	VerifyMode.CERT_NONE

Whether client certificate is required (see stdlib ssl module’s)

ca_certs

	--ca-certs FILE

	None

CA certificates file

suppress_ragged_eofs

	--suppress-ragged-eofs

	True

Suppress ragged EOFs (see stdlib ssl module’s)

do_handshake_on_connect

	--do-handshake-on-connect

	False

Whether to perform SSL handshake on socket connect (see stdlib ssl module’s)

ciphers

	--ciphers

	TLSv1

Ciphers to use (see stdlib ssl module’s)

Security

limit_request_line

	--limit-request-line INT

	4094

The maximum size of HTTP request line in bytes.

This parameter is used to limit the allowed size of a client’s
HTTP request-line. Since the request-line consists of the HTTP
method, URI, and protocol version, this directive places a
restriction on the length of a request-URI allowed for a request
on the server. A server needs this value to be large enough to
hold any of its resource names, including any information that
might be passed in the query part of a GET request. Value is a number
from 0 (unlimited) to 8190.

This parameter can be used to prevent any DDOS attack.

limit_request_fields

	--limit-request-fields INT

	100

Limit the number of HTTP headers fields in a request.

This parameter is used to limit the number of headers in a request to
prevent DDOS attack. Used with the limit_request_field_size it allows
more safety. By default this value is 100 and can’t be larger than
32768.

limit_request_field_size

	--limit-request-field_size INT

	8190

Limit the allowed size of an HTTP request header field.

Value is a positive number or 0. Setting it to 0 will allow unlimited
header field sizes.

Warning

Setting this parameter to a very high or unlimited value can open
up for DDOS attacks.

Server Hooks

on_starting

	def on_starting(server):
 pass

Called just before the master process is initialized.

The callable needs to accept a single instance variable for the Arbiter.

on_reload

	def on_reload(server):
 pass

Called to recycle workers during a reload via SIGHUP.

The callable needs to accept a single instance variable for the Arbiter.

when_ready

	def when_ready(server):
 pass

Called just after the server is started.

The callable needs to accept a single instance variable for the Arbiter.

pre_fork

	def pre_fork(server, worker):
 pass

Called just before a worker is forked.

The callable needs to accept two instance variables for the Arbiter and
new Worker.

post_fork

	def post_fork(server, worker):
 pass

Called just after a worker has been forked.

The callable needs to accept two instance variables for the Arbiter and
new Worker.

post_worker_init

	def post_worker_init(worker):
 pass

Called just after a worker has initialized the application.

The callable needs to accept one instance variable for the initialized
Worker.

worker_int

	def worker_int(worker):
 pass

Called just after a worker exited on SIGINT or SIGQUIT.

The callable needs to accept one instance variable for the initialized
Worker.

worker_abort

	def worker_abort(worker):
 pass

Called when a worker received the SIGABRT signal.

This call generally happens on timeout.

The callable needs to accept one instance variable for the initialized
Worker.

pre_exec

	def pre_exec(server):
 pass

Called just before a new master process is forked.

The callable needs to accept a single instance variable for the Arbiter.

pre_request

	def pre_request(worker, req):
 worker.log.debug("%s %s" % (req.method, req.path))

Called just before a worker processes the request.

The callable needs to accept two instance variables for the Worker and
the Request.

post_request

	def post_request(worker, req, environ, resp):
 pass

Called after a worker processes the request.

The callable needs to accept two instance variables for the Worker and
the Request.

child_exit

	def child_exit(server, worker):
 pass

Called just after a worker has been exited, in the master process.

The callable needs to accept two instance variables for the Arbiter and
the just-exited Worker.

New in version 19.7.

worker_exit

	def worker_exit(server, worker):
 pass

Called just after a worker has been exited, in the worker process.

The callable needs to accept two instance variables for the Arbiter and
the just-exited Worker.

nworkers_changed

	def nworkers_changed(server, new_value, old_value):
 pass

Called just after num_workers has been changed.

The callable needs to accept an instance variable of the Arbiter and
two integers of number of workers after and before change.

If the number of workers is set for the first time, old_value would
be None.

on_exit

	def on_exit(server):
 pass

Called just before exiting Gunicorn.

The callable needs to accept a single instance variable for the Arbiter.

Server Mechanics

preload_app

	--preload

	False

Load application code before the worker processes are forked.

By preloading an application you can save some RAM resources as well as
speed up server boot times. Although, if you defer application loading
to each worker process, you can reload your application code easily by
restarting workers.

sendfile

	--no-sendfile

	None

Disables the use of sendfile().

If not set, the value of the SENDFILE environment variable is used
to enable or disable its usage.

New in version 19.2.

Changed in version 19.4: Swapped --sendfile with --no-sendfile to actually allow
disabling.

Changed in version 19.6: added support for the SENDFILE environment variable

reuse_port

	--reuse-port

	False

Set the SO_REUSEPORT flag on the listening socket.

New in version 19.8.

chdir

	--chdir

	/home/docs/checkouts/readthedocs.org/user_builds/gunicorn-docs/checkouts/19.10.0/docs/source

Chdir to specified directory before apps loading.

daemon

	-D, --daemon

	False

Daemonize the Gunicorn process.

Detaches the server from the controlling terminal and enters the
background.

raw_env

	-e ENV, --env ENV

	[]

Set environment variable (key=value).

Pass variables to the execution environment. Ex.:

$ gunicorn -b 127.0.0.1:8000 --env FOO=1 test:app

and test for the foo variable environment in your application.

pidfile

	-p FILE, --pid FILE

	None

A filename to use for the PID file.

If not set, no PID file will be written.

worker_tmp_dir

	--worker-tmp-dir DIR

	None

A directory to use for the worker heartbeat temporary file.

If not set, the default temporary directory will be used.

Note

The current heartbeat system involves calling os.fchmod on
temporary file handlers and may block a worker for arbitrary time
if the directory is on a disk-backed filesystem.

See How do I avoid Gunicorn excessively blocking in os.fchmod? for more detailed information
and a solution for avoiding this problem.

user

	-u USER, --user USER

	1005

Switch worker processes to run as this user.

A valid user id (as an integer) or the name of a user that can be
retrieved with a call to pwd.getpwnam(value) or None to not
change the worker process user.

group

	-g GROUP, --group GROUP

	205

Switch worker process to run as this group.

A valid group id (as an integer) or the name of a user that can be
retrieved with a call to pwd.getgrnam(value) or None to not
change the worker processes group.

umask

	-m INT, --umask INT

	0

A bit mask for the file mode on files written by Gunicorn.

Note that this affects unix socket permissions.

A valid value for the os.umask(mode) call or a string compatible
with int(value, 0) (0 means Python guesses the base, so values
like 0, 0xFF, 0022 are valid for decimal, hex, and octal
representations)

initgroups

	--initgroups

	False

If true, set the worker process’s group access list with all of the
groups of which the specified username is a member, plus the specified
group id.

New in version 19.7.

tmp_upload_dir

	None

Directory to store temporary request data as they are read.

This may disappear in the near future.

This path should be writable by the process permissions set for Gunicorn
workers. If not specified, Gunicorn will choose a system generated
temporary directory.

secure_scheme_headers

	{'X-FORWARDED-PROTOCOL': 'ssl', 'X-FORWARDED-PROTO': 'https', 'X-FORWARDED-SSL': 'on'}

A dictionary containing headers and values that the front-end proxy
uses to indicate HTTPS requests. These tell Gunicorn to set
wsgi.url_scheme to https, so your application can tell that the
request is secure.

The dictionary should map upper-case header names to exact string
values. The value comparisons are case-sensitive, unlike the header
names, so make sure they’re exactly what your front-end proxy sends
when handling HTTPS requests.

It is important that your front-end proxy configuration ensures that
the headers defined here can not be passed directly from the client.

forwarded_allow_ips

	--forwarded-allow-ips STRING

	127.0.0.1

Front-end’s IPs from which allowed to handle set secure headers.
(comma separate).

Set to * to disable checking of Front-end IPs (useful for setups
where you don’t know in advance the IP address of Front-end, but
you still trust the environment).

By default, the value of the FORWARDED_ALLOW_IPS environment
variable. If it is not defined, the default is "127.0.0.1".

pythonpath

	--pythonpath STRING

	None

A comma-separated list of directories to add to the Python path.

e.g.
'/home/djangoprojects/myproject,/home/python/mylibrary'.

paste

	--paste STRING, --paster STRING

	None

Load a PasteDeploy config file. The argument may contain a #
symbol followed by the name of an app section from the config file,
e.g. production.ini#admin.

At this time, using alternate server blocks is not supported. Use the
command line arguments to control server configuration instead.

proxy_protocol

	--proxy-protocol

	False

Enable detect PROXY protocol (PROXY mode).

Allow using HTTP and Proxy together. It may be useful for work with
stunnel as HTTPS frontend and Gunicorn as HTTP server.

PROXY protocol: http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

Example for stunnel config:

[https]
protocol = proxy
accept = 443
connect = 80
cert = /etc/ssl/certs/stunnel.pem
key = /etc/ssl/certs/stunnel.key

proxy_allow_ips

	--proxy-allow-from

	127.0.0.1

Front-end’s IPs from which allowed accept proxy requests (comma separate).

Set to * to disable checking of Front-end IPs (useful for setups
where you don’t know in advance the IP address of Front-end, but
you still trust the environment)

raw_paste_global_conf

	--paste-global CONF

	[]

Set a PasteDeploy global config variable in key=value form.

The option can be specified multiple times.

The variables are passed to the the PasteDeploy entrypoint. Example:

$ gunicorn -b 127.0.0.1:8000 --paste development.ini --paste-global FOO=1 --paste-global BAR=2

New in version 19.7.

strip_header_spaces

	--strip-header-spaces

	False

Strip spaces present between the header name and the the :.

This is known to induce vulnerabilities and is not compliant with the HTTP/1.1 standard.
See https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn.

Use with care and only if necessary.

Server Socket

bind

	-b ADDRESS, --bind ADDRESS

	['127.0.0.1:8000']

The socket to bind.

A string of the form: HOST, HOST:PORT, unix:PATH. An IP is
a valid HOST.

Multiple addresses can be bound. ex.:

$ gunicorn -b 127.0.0.1:8000 -b [::1]:8000 test:app

will bind the test:app application on localhost both on ipv6
and ipv4 interfaces.

backlog

	--backlog INT

	2048

The maximum number of pending connections.

This refers to the number of clients that can be waiting to be served.
Exceeding this number results in the client getting an error when
attempting to connect. It should only affect servers under significant
load.

Must be a positive integer. Generally set in the 64-2048 range.

Worker Processes

workers

	-w INT, --workers INT

	1

The number of worker processes for handling requests.

A positive integer generally in the 2-4 x $(NUM_CORES) range.
You’ll want to vary this a bit to find the best for your particular
application’s work load.

By default, the value of the WEB_CONCURRENCY environment variable.
If it is not defined, the default is 1.

worker_class

	-k STRING, --worker-class STRING

	sync

The type of workers to use.

The default class (sync) should handle most “normal” types of
workloads. You’ll want to read Design for information on when
you might want to choose one of the other worker classes. Required
libraries may be installed using setuptools’ extra_require feature.

A string referring to one of the following bundled classes:

	sync

	eventlet - Requires eventlet >= 0.24.1 (or install it via
pip install gunicorn[eventlet])

	gevent - Requires gevent >= 0.13 (or install it via
pip install gunicorn[gevent])

	tornado - Requires tornado >= 0.2 (or install it via
pip install gunicorn[tornado])

	gthread - Python 2 requires the futures package to be installed
(or install it via pip install gunicorn[gthread])

	gaiohttp - Deprecated.

Optionally, you can provide your own worker by giving Gunicorn a
Python path to a subclass of gunicorn.workers.base.Worker.
This alternative syntax will load the gevent class:
gunicorn.workers.ggevent.GeventWorker.

Deprecated since version 19.8: The gaiohttp worker is deprecated. Please use
aiohttp.worker.GunicornWebWorker instead. See
AsyncIO Workers for more information on how to use it.

threads

	--threads INT

	1

The number of worker threads for handling requests.

Run each worker with the specified number of threads.

A positive integer generally in the 2-4 x $(NUM_CORES) range.
You’ll want to vary this a bit to find the best for your particular
application’s work load.

If it is not defined, the default is 1.

This setting only affects the Gthread worker type.

Note

If you try to use the sync worker type and set the threads
setting to more than 1, the gthread worker type will be used
instead.

worker_connections

	--worker-connections INT

	1000

The maximum number of simultaneous clients.

This setting only affects the Eventlet and Gevent worker types.

max_requests

	--max-requests INT

	0

The maximum number of requests a worker will process before restarting.

Any value greater than zero will limit the number of requests a worker
will process before automatically restarting. This is a simple method
to help limit the damage of memory leaks.

If this is set to zero (the default) then the automatic worker
restarts are disabled.

max_requests_jitter

	--max-requests-jitter INT

	0

The maximum jitter to add to the max_requests setting.

The jitter causes the restart per worker to be randomized by
randint(0, max_requests_jitter). This is intended to stagger worker
restarts to avoid all workers restarting at the same time.

New in version 19.2.

timeout

	-t INT, --timeout INT

	30

Workers silent for more than this many seconds are killed and restarted.

Generally set to thirty seconds. Only set this noticeably higher if
you’re sure of the repercussions for sync workers. For the non sync
workers it just means that the worker process is still communicating and
is not tied to the length of time required to handle a single request.

graceful_timeout

	--graceful-timeout INT

	30

Timeout for graceful workers restart.

After receiving a restart signal, workers have this much time to finish
serving requests. Workers still alive after the timeout (starting from
the receipt of the restart signal) are force killed.

keepalive

	--keep-alive INT

	2

The number of seconds to wait for requests on a Keep-Alive connection.

Generally set in the 1-5 seconds range for servers with direct connection
to the client (e.g. when you don’t have separate load balancer). When
Gunicorn is deployed behind a load balancer, it often makes sense to
set this to a higher value.

Note

sync worker does not support persistent connections and will
ignore this option.

Instrumentation

New in version 19.1.

Gunicorn provides an optional instrumentation of the arbiter and
workers using the statsD [https://github.com/etsy/statsd] protocol over UDP. Thanks to the
gunicorn.instrument.statsd module, Gunicorn becomes a statsD client.
The use of UDP cleanly isolates Gunicorn from the receiving end of the statsD
metrics so that instrumentation does not cause Gunicorn to be held up by a slow
statsD consumer.

To use statsD, just tell Gunicorn where the statsD server is:

$ gunicorn --statsd-host=localhost:8125 --statsd-prefix=service.app ...

The Statsd logger overrides gunicorn.glogging.Logger to track
all requests. The following metrics are generated:

	gunicorn.requests: request rate per second

	gunicorn.request.duration: histogram of request duration (in millisecond)

	gunicorn.workers: number of workers managed by the arbiter (gauge)

	gunicorn.log.critical: rate of critical log messages

	gunicorn.log.error: rate of error log messages

	gunicorn.log.warning: rate of warning log messages

	gunicorn.log.exception: rate of exceptional log messages

See the statsd-host setting for more information.

Deploying Gunicorn

We strongly recommend to use Gunicorn behind a proxy server.

Nginx Configuration

Although there are many HTTP proxies available, we strongly advise that you
use Nginx [https://nginx.org/]. If you choose another proxy server you need to make sure that it
buffers slow clients when you use default Gunicorn workers. Without this
buffering Gunicorn will be easily susceptible to denial-of-service attacks.
You can use Hey [https://github.com/rakyll/hey] to check if your proxy is behaving properly.

An example configuration [https://github.com/benoitc/gunicorn/blob/master/examples/nginx.conf] file for fast clients with Nginx [https://nginx.org/]:

nginx.conf

worker_processes 1;

user nobody nogroup;
'user nobody nobody;' for systems with 'nobody' as a group instead
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;

events {
 worker_connections 1024; # increase if you have lots of clients
 accept_mutex off; # set to 'on' if nginx worker_processes > 1
 # 'use epoll;' to enable for Linux 2.6+
 # 'use kqueue;' to enable for FreeBSD, OSX
}

http {
 include mime.types;
 # fallback in case we can't determine a type
 default_type application/octet-stream;
 access_log /var/log/nginx/access.log combined;
 sendfile on;

 upstream app_server {
 # fail_timeout=0 means we always retry an upstream even if it failed
 # to return a good HTTP response

 # for UNIX domain socket setups
 server unix:/tmp/gunicorn.sock fail_timeout=0;

 # for a TCP configuration
 # server 192.168.0.7:8000 fail_timeout=0;
 }

 server {
 # if no Host match, close the connection to prevent host spoofing
 listen 80 default_server;
 return 444;
 }

 server {
 # use 'listen 80 deferred;' for Linux
 # use 'listen 80 accept_filter=httpready;' for FreeBSD
 listen 80;
 client_max_body_size 4G;

 # set the correct host(s) for your site
 server_name example.com www.example.com;

 keepalive_timeout 5;

 # path for static files
 root /path/to/app/current/public;

 location / {
 # checks for static file, if not found proxy to app
 try_files $uri @proxy_to_app;
 }

 location @proxy_to_app {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header Host $http_host;
 # we don't want nginx trying to do something clever with
 # redirects, we set the Host: header above already.
 proxy_redirect off;
 proxy_pass http://app_server;
 }

 error_page 500 502 503 504 /500.html;
 location = /500.html {
 root /path/to/app/current/public;
 }
 }
}

If you want to be able to handle streaming request/responses or other fancy
features like Comet, Long polling, or Web sockets, you need to turn off the
proxy buffering. When you do this you must run with one of the async worker
classes.

To turn off buffering, you only need to add proxy_buffering off; to your
location block:

...
location @proxy_to_app {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_buffering off;

 proxy_pass http://app_server;
}
...

It is recommended to pass protocol information to Gunicorn. Many web
frameworks use this information to generate URLs. Without this
information, the application may mistakenly generate ‘http’ URLs in
‘https’ responses, leading to mixed content warnings or broken
applications. To configure Nginx to pass an appropriate header, add
a proxy_set_header directive to your location block:

...
proxy_set_header X-Forwarded-Proto $scheme;
...

If you are running Nginx on a different host than Gunicorn you need to tell
Gunicorn to trust the X-Forwarded-* headers sent by Nginx. By default,
Gunicorn will only trust these headers if the connection comes from localhost.
This is to prevent a malicious client from forging these headers:

$ gunicorn -w 3 --forwarded-allow-ips="10.170.3.217,10.170.3.220" test:app

When the Gunicorn host is completely firewalled from the external network such
that all connections come from a trusted proxy (e.g. Heroku) this value can
be set to ‘*’. Using this value is potentially dangerous if connections to
Gunicorn may come from untrusted proxies or directly from clients since the
application may be tricked into serving SSL-only content over an insecure
connection.

Gunicorn 19 introduced a breaking change concerning how REMOTE_ADDR is
handled. Previous to Gunicorn 19 this was set to the value of
X-Forwarded-For if received from a trusted proxy. However, this was not in
compliance with RFC 3875 [https://tools.ietf.org/html/rfc3875.html] which is why the REMOTE_ADDR is now the IP
address of the proxy and not the actual user. You should instead
configure Nginx to send the user’s IP address through the X-Forwarded-For
header like this:

...
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
...

It is also worth noting that the REMOTE_ADDR will be completely empty if
you bind Gunicorn to a UNIX socket and not a TCP host:port tuple.

Using Virtualenv

To serve an app from a Virtualenv [https://pypi.python.org/pypi/virtualenv] it is generally easiest to just install
Gunicorn directly into the Virtualenv. This will create a set of Gunicorn
scripts for that Virtualenv which can be used to run applications normally.

If you have Virtualenv installed, you should be able to do something like
this:

$ mkdir ~/venvs/
$ virtualenv ~/venvs/webapp
$ source ~/venvs/webapp/bin/activate
$ pip install gunicorn
$ deactivate

Then you just need to use one of the three Gunicorn scripts that was installed
into ~/venvs/webapp/bin.

Note: You can force the installation of Gunicorn in your Virtualenv by
passing -I or --ignore-installed option to pip:

$ source ~/venvs/webapp/bin/activate
$ pip install -I gunicorn

Monitoring

Note

Make sure that when using either of these service monitors you do not
enable the Gunicorn’s daemon mode. These monitors expect that the process
they launch will be the process they need to monitor. Daemonizing will
fork-exec which creates an unmonitored process and generally just
confuses the monitor services.

Gaffer

Using Gafferd and gaffer

Gaffer [https://gaffer.readthedocs.io/] can be used to monitor Gunicorn. A simple configuration is:

[process:gunicorn]
cmd = gunicorn -w 3 test:app
cwd = /path/to/project

Then you can easily manage Gunicorn using Gaffer [https://gaffer.readthedocs.io/].

Using a Procfile

Create a Procfile in your project:

gunicorn = gunicorn -w 3 test:app

You can launch any other applications that should be launched at the same time.

Then you can start your Gunicorn application using Gaffer [https://gaffer.readthedocs.io/]:

gaffer start

If gafferd is launched you can also load your Procfile in it directly:

gaffer load

All your applications will be then supervised by gafferd.

Runit

A popular method for deploying Gunicorn is to have it monitored by runit [http://smarden.org/runit/].
Here is an example service [https://github.com/benoitc/gunicorn/blob/master/examples/gunicorn_rc] definition:

#!/bin/sh

GUNICORN=/usr/local/bin/gunicorn
ROOT=/path/to/project
PID=/var/run/gunicorn.pid

APP=main:application

if [-f $PID]; then rm $PID; fi

cd $ROOT
exec $GUNICORN -c $ROOT/gunicorn.conf.py --pid=$PID $APP

Save this as /etc/sv/[app_name]/run, and make it executable
(chmod u+x /etc/sv/[app_name]/run).
Then run ln -s /etc/sv/[app_name] /etc/service/[app_name].
If runit is installed, Gunicorn should start running automatically as soon
as you create the symlink.

If it doesn’t start automatically, run the script directly to troubleshoot.

Supervisor

Another useful tool to monitor and control Gunicorn is Supervisor [http://supervisord.org/]. A
simple configuration [https://github.com/benoitc/gunicorn/blob/master/examples/supervisor.conf] is:

[program:gunicorn]
command=/path/to/gunicorn main:application -c /path/to/gunicorn.conf.py
directory=/path/to/project
user=nobody
autostart=true
autorestart=true
redirect_stderr=true

Upstart

Using Gunicorn with upstart is simple. In this example we will run the app
“myapp” from a virtualenv. All errors will go to
/var/log/upstart/myapp.log.

/etc/init/myapp.conf:

description "myapp"

start on (filesystem)
stop on runlevel [016]

respawn
setuid nobody
setgid nogroup
chdir /path/to/app/directory

exec /path/to/virtualenv/bin/gunicorn myapp:app

Systemd

A tool that is starting to be common on linux systems is Systemd [https://www.freedesktop.org/wiki/Software/systemd/]. Below are
configurations files and instructions for using systemd to create a unix socket
for incoming Gunicorn requests. Systemd will listen on this socket and start
gunicorn automatically in response to traffic. Later in this section are
instructions for configuring Nginx to forward web traffic to the newly created
unix socket:

/etc/systemd/system/gunicorn.service:

[Unit]
Description=gunicorn daemon
Requires=gunicorn.socket
After=network.target

[Service]
PIDFile=/run/gunicorn/pid
User=someuser
Group=someuser
RuntimeDirectory=gunicorn
WorkingDirectory=/home/someuser/applicationroot
ExecStart=/usr/bin/gunicorn --pid /run/gunicorn/pid \
 --bind unix:/run/gunicorn/socket applicationname.wsgi
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s TERM $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

/etc/systemd/system/gunicorn.socket:

[Unit]
Description=gunicorn socket

[Socket]
ListenStream=/run/gunicorn/socket

[Install]
WantedBy=sockets.target

/etc/tmpfiles.d/gunicorn.conf:

d /run/gunicorn 0755 someuser somegroup -

Next enable the socket so it autostarts at boot:

systemctl enable gunicorn.socket

Either reboot, or start the services manually:

systemctl start gunicorn.socket

After running curl --unix-socket /run/gunicorn/socket http, Gunicorn
should start and you should see some HTML from your server in the terminal.

You must now configure your web proxy to send traffic to the new Gunicorn
socket. Edit your nginx.conf to include the following:

/etc/nginx/nginx.conf:

...
http {
 server {
 listen 8000;
 server_name 127.0.0.1;
 location / {
 proxy_pass http://unix:/run/gunicorn/socket;
 }
 }
}
...

Note

The listen and server_name used here are configured for a local machine.
In a production server you will most likely listen on port 80,
and use your URL as the server_name.

Now make sure you enable the nginx service so it automatically starts at boot:

systemctl enable nginx.service

Either reboot, or start Nginx with the following command:

systemctl start nginx

Now you should be able to test Nginx with Gunicorn by visiting
http://127.0.0.1:8000/ in any web browser. Systemd is now set up.

Logging

Logging can be configured by using various flags detailed in the
configuration documentation [http://docs.gunicorn.org/en/latest/settings.html#logging] or by creating a logging configuration file [https://github.com/benoitc/gunicorn/blob/master/examples/logging.conf].
Send the USR1 signal to rotate logs if you are using the logrotate
utility:

kill -USR1 $(cat /var/run/gunicorn.pid)

Note

Overriding the LOGGING dictionary requires to set
disable_existing_loggers: False to not interfere with the Gunicorn
logging.

Warning

Gunicorn error log is here to log errors from Gunicorn, not from another
application.

Signal Handling

A brief description of the signals handled by Gunicorn. We also document the
signals used internally by Gunicorn to communicate with the workers.

Master process

	QUIT, INT: Quick shutdown

	TERM: Graceful shutdown. Waits for workers to finish their
current requests up to the graceful_timeout.

	HUP: Reload the configuration, start the new worker processes with a new
configuration and gracefully shutdown older workers. If the application is
not preloaded (using the preload_app option), Gunicorn will also load
the new version of it.

	TTIN: Increment the number of processes by one

	TTOU: Decrement the number of processes by one

	USR1: Reopen the log files

	USR2: Upgrade Gunicorn on the fly. A separate TERM signal should
be used to kill the old master process. This signal can also be used to use
the new versions of pre-loaded applications. See Upgrading to a new binary on the fly for
more information.

	WINCH: Gracefully shutdown the worker processes when Gunicorn is
daemonized.

Worker process

Sending signals directly to the worker processes should not normally be
needed. If the master process is running, any exited worker will be
automatically respawned.

	QUIT, INT: Quick shutdown

	TERM: Graceful shutdown

	USR1: Reopen the log files

Reload the configuration

The HUP signal can be used to reload the Gunicorn configuration on the
fly.

2013-06-29 06:26:55 [20682] [INFO] Handling signal: hup
2013-06-29 06:26:55 [20682] [INFO] Hang up: Master
2013-06-29 06:26:55 [20703] [INFO] Booting worker with pid: 20703
2013-06-29 06:26:55 [20702] [INFO] Booting worker with pid: 20702
2013-06-29 06:26:55 [20688] [INFO] Worker exiting (pid: 20688)
2013-06-29 06:26:55 [20687] [INFO] Worker exiting (pid: 20687)
2013-06-29 06:26:55 [20689] [INFO] Worker exiting (pid: 20689)
2013-06-29 06:26:55 [20704] [INFO] Booting worker with pid: 20704

Sending a HUP signal will reload the configuration, start the new
worker processes with a new configuration and gracefully shutdown older
workers. If the application is not preloaded (using the preload_app
option), Gunicorn will also load the new version of it.

Upgrading to a new binary on the fly

Changed in version 19.6.0: PID file naming format has been changed from <name>.pid.oldbin to
<name>.pid.2.

If you need to replace the Gunicorn binary with a new one (when
upgrading to a new version or adding/removing server modules), you can
do it without any service downtime - no incoming requests will be
lost. Preloaded applications will also be reloaded.

First, replace the old binary with a new one, then send a USR2 signal to
the current master process. It executes a new binary whose PID file is
postfixed with .2 (e.g. /var/run/gunicorn.pid.2),
which in turn starts a new master process and new worker processes:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20844 benoitc 20 0 54808 11m 3352 S 0.0 0.1 0:00.36 gunicorn: master [test:app]
20849 benoitc 20 0 54808 9.9m 1500 S 0.0 0.1 0:00.02 gunicorn: worker [test:app]
20850 benoitc 20 0 54808 9.9m 1500 S 0.0 0.1 0:00.01 gunicorn: worker [test:app]
20851 benoitc 20 0 54808 9.9m 1500 S 0.0 0.1 0:00.01 gunicorn: worker [test:app]
20854 benoitc 20 0 55748 12m 3348 S 0.0 0.2 0:00.35 gunicorn: master [test:app]
20859 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.01 gunicorn: worker [test:app]
20860 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.00 gunicorn: worker [test:app]
20861 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.01 gunicorn: worker [test:app]

At this point, two instances of Gunicorn are running, handling the
incoming requests together. To phase the old instance out, you have to
send a WINCH signal to the old master process, and its worker
processes will start to gracefully shut down.

At this point you can still revert to the old process since it hasn’t closed
its listen sockets yet, by following these steps:

	Send a HUP signal to the old master process - it will start the worker
processes without reloading a configuration file

	Send a TERM signal to the new master process to gracefully shut down its
worker processes

	Send a QUIT signal to the new master process to force it quit

If for some reason the new worker processes do not quit, send a KILL signal
to them after the new master process quits, and everything will back to exactly
as before the upgrade attempt.

If the update is successful and you want to keep the new master process, send a
TERM signal to the old master process to leave only the new server
running:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20854 benoitc 20 0 55748 12m 3348 S 0.0 0.2 0:00.45 gunicorn: master [test:app]
20859 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.02 gunicorn: worker [test:app]
20860 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.02 gunicorn: worker [test:app]
20861 benoitc 20 0 55748 11m 1500 S 0.0 0.1 0:00.01 gunicorn: worker [test:app]

Custom Application

New in version 19.0.

Sometimes, you want to integrate Gunicorn with your WSGI application. In this
case, you can inherit from gunicorn.app.base.BaseApplication.

Here is a small example where we create a very small WSGI app and load it with
a custom Application:

from __future__ import unicode_literals

import multiprocessing

import gunicorn.app.base

from gunicorn.six import iteritems

def number_of_workers():
 return (multiprocessing.cpu_count() * 2) + 1

def handler_app(environ, start_response):
 response_body = b'Works fine'
 status = '200 OK'

 response_headers = [
 ('Content-Type', 'text/plain'),
]

 start_response(status, response_headers)

 return [response_body]

class StandaloneApplication(gunicorn.app.base.BaseApplication):

 def __init__(self, app, options=None):
 self.options = options or {}
 self.application = app
 super(StandaloneApplication, self).__init__()

 def load_config(self):
 config = dict([(key, value) for key, value in iteritems(self.options)
 if key in self.cfg.settings and value is not None])
 for key, value in iteritems(config):
 self.cfg.set(key.lower(), value)

 def load(self):
 return self.application

if __name__ == '__main__':
 options = {
 'bind': '%s:%s' % ('127.0.0.1', '8080'),
 'workers': number_of_workers(),
 }
 StandaloneApplication(handler_app, options).run()

Design

A brief description of the architecture of Gunicorn.

Server Model

Gunicorn is based on the pre-fork worker model. This means that there is a
central master process that manages a set of worker processes. The master
never knows anything about individual clients. All requests and responses are
handled completely by worker processes.

Master

The master process is a simple loop that listens for various process signals
and reacts accordingly. It manages the list of running workers by listening
for signals like TTIN, TTOU, and CHLD. TTIN and TTOU tell the master to
increase or decrease the number of running workers. CHLD indicates that a child
process has terminated, in this case the master process automatically restarts
the failed worker.

Sync Workers

The most basic and the default worker type is a synchronous worker class that
handles a single request at a time. This model is the simplest to reason about
as any errors will affect at most a single request. Though as we describe below
only processing a single request at a time requires some assumptions about how
applications are programmed.

sync worker does not support persistent connections - each connection is
closed after response has been sent (even if you manually add Keep-Alive
or Connection: keep-alive header in your application).

Async Workers

The asynchronous workers available are based on Greenlets [https://github.com/python-greenlet/greenlet] (via Eventlet [http://eventlet.net/] and
Gevent [http://www.gevent.org/]). Greenlets are an implementation of cooperative multi-threading for
Python. In general, an application should be able to make use of these worker
classes with no changes.

Tornado Workers

There’s also a Tornado worker class. It can be used to write applications using
the Tornado framework. Although the Tornado workers are capable of serving a
WSGI application, this is not a recommended configuration.

AsyncIO Workers

These workers are compatible with python3. You have two kind of workers.

The worker gthread is a threaded worker. It accepts connections in the
main loop, accepted connections are added to the thread pool as a
connection job. On keepalive connections are put back in the loop
waiting for an event. If no event happen after the keep alive timeout,
the connection is closed.

The worker gaiohttp is a full asyncio worker using aiohttp [https://aiohttp.readthedocs.io/en/stable/].

Note

The gaiohttp worker requires the aiohttp [https://aiohttp.readthedocs.io/en/stable/] module to be installed.
aiohttp [https://aiohttp.readthedocs.io/en/stable/] has removed its native WSGI application support in version 2.
If you want to continue to use the gaiohttp worker with your WSGI
application (e.g. an application that uses Flask or Django), there are
three options available:

	Install aiohttp [https://aiohttp.readthedocs.io/en/stable/] version 1.3.5 instead of version 2:

$ pip install aiohttp==1.3.5

	Use aiohttp_wsgi [https://aiohttp-wsgi.readthedocs.io/en/stable/index.html] to wrap your WSGI application. You can take a look
at the example [https://github.com/benoitc/gunicorn/blob/master/examples/frameworks/flaskapp_aiohttp_wsgi.py] in the Gunicorn repository.

	Port your application to use aiohttp [https://aiohttp.readthedocs.io/en/stable/]’s web.Application API.

	Use the aiohttp.worker.GunicornWebWorker worker instead of the
deprecated gaiohttp worker.

Choosing a Worker Type

The default synchronous workers assume that your application is resource-bound
in terms of CPU and network bandwidth. Generally this means that your
application shouldn’t do anything that takes an undefined amount of time. An
example of something that takes an undefined amount of time is a request to the
internet. At some point the external network will fail in such a way that
clients will pile up on your servers. So, in this sense, any web application
which makes outgoing requests to APIs will benefit from an asynchronous worker.

This resource bound assumption is why we require a buffering proxy in front of
a default configuration Gunicorn. If you exposed synchronous workers to the
internet, a DOS attack would be trivial by creating a load that trickles data to
the servers. For the curious, Hey [https://github.com/rakyll/hey] is an example of this type of load.

Some examples of behavior requiring asynchronous workers:

	Applications making long blocking calls (Ie, external web services)

	Serving requests directly to the internet

	Streaming requests and responses

	Long polling

	Web sockets

	Comet

How Many Workers?

DO NOT scale the number of workers to the number of clients you expect to have.
Gunicorn should only need 4-12 worker processes to handle hundreds or thousands
of requests per second.

Gunicorn relies on the operating system to provide all of the load balancing
when handling requests. Generally we recommend (2 x $num_cores) + 1 as the
number of workers to start off with. While not overly scientific, the formula
is based on the assumption that for a given core, one worker will be reading
or writing from the socket while the other worker is processing a request.

Obviously, your particular hardware and application are going to affect the
optimal number of workers. Our recommendation is to start with the above guess
and tune using TTIN and TTOU signals while the application is under load.

Always remember, there is such a thing as too many workers. After a point your
worker processes will start thrashing system resources decreasing the
throughput of the entire system.

How Many Threads?

Since Gunicorn 19, a threads option can be used to process requests in multiple
threads. Using threads assumes use of the gthread worker. One benefit from threads
is that requests can take longer than the worker timeout while notifying the
master process that it is not frozen and should not be killed. Depending on the
system, using multiple threads, multiple worker processes, or some mixture, may
yield the best results. For example, CPython may not perform as well as Jython
when using threads, as threading is implemented differently by each. Using
threads instead of processes is a good way to reduce the memory footprint of
Gunicorn, while still allowing for application upgrades using the reload
signal, as the application code will be shared among workers but loaded only in
the worker processes (unlike when using the preload setting, which loads the
code in the master process).

Note

Under Python 2.x, you need to install the ‘futures’ package to use this
feature.

FAQ

WSGI Bits

How do I set SCRIPT_NAME?

By default SCRIPT_NAME is an empty string. The value could be set by
setting SCRIPT_NAME in the environment or as an HTTP header.

Server Stuff

How do I reload my application in Gunicorn?

You can gracefully reload by sending HUP signal to gunicorn:

$ kill -HUP masterpid

How might I test a proxy configuration?

The Hey [https://github.com/rakyll/hey] program is a great way to test that your proxy is correctly
buffering responses for the synchronous workers:

$ hey -n 10000 -c 100 http://127.0.0.1:5000/

This runs a benchmark of 10000 requests with 100 running concurrently.

How can I name processes?

If you install the Python package setproctitle [https://pypi.python.org/pypi/setproctitle] Gunicorn will set the process
names to something a bit more meaningful. This will affect the output you see
in tools like ps and top. This helps for distinguishing the master
process as well as between masters when running more than one app on a single
machine. See the proc_name setting for more information.

Why is there no HTTP Keep-Alive?

The default Sync workers are designed to run behind Nginx which only uses
HTTP/1.0 with its upstream servers. If you want to deploy Gunicorn to
handle unbuffered requests (ie, serving requests directly from the internet)
you should use one of the async workers.

Worker Processes

How do I know which type of worker to use?

Read the Design page for help on the various worker types.

What types of workers are there?

Check out the configuration docs for worker_class.

How can I figure out the best number of worker processes?

Here is our recommendation for tuning the number of workers.

How can I change the number of workers dynamically?

TTIN and TTOU signals can be sent to the master to increase or decrease
the number of workers.

To increase the worker count by one:

$ kill -TTIN $masterpid

To decrease the worker count by one:

$ kill -TTOU $masterpid

Does Gunicorn suffer from the thundering herd problem?

The thundering herd problem occurs when many sleeping request handlers, which
may be either threads or processes, wake up at the same time to handle a new
request. Since only one handler will receive the request, the others will have
been awakened for no reason, wasting CPU cycles. At this time, Gunicorn does
not implement any IPC solution for coordinating between worker processes. You
may experience high load due to this problem when using many workers or
threads. However a work has been started [https://github.com/benoitc/gunicorn/issues/792] to remove this issue.

Why I don’t see any logs in the console?

In version R19, Gunicorn doesn’t log by default in the console.
To watch the logs in the console you need to use the option --log-file=-.
In version R20, Gunicorn logs to the console by default again.

Kernel Parameters

When dealing with large numbers of concurrent connections there are a handful
of kernel parameters that you might need to adjust. Generally these should only
affect sites with a very large concurrent load. These parameters are not
specific to Gunicorn, they would apply to any sort of network server you may be
running.

These commands are for Linux. Your particular OS may have slightly different
parameters.

How can I increase the maximum number of file descriptors?

One of the first settings that usually needs to be bumped is the maximum number
of open file descriptors for a given process. For the confused out there,
remember that Unices treat sockets as files.

$ sudo ulimit -n 2048

How can I increase the maximum socket backlog?

Listening sockets have an associated queue of incoming connections that are
waiting to be accepted. If you happen to have a stampede of clients that fill
up this queue new connections will eventually start getting dropped.

$ sudo sysctl -w net.core.somaxconn="2048"

How can I disable the use of sendfile()

Disabling the use sendfile() can be done by using the --no-sendfile
setting or by setting the environment variable SENDFILE to 0.

Troubleshooting

How do I fix Django reporting an ImproperlyConfigured error?

With asynchronous workers, creating URLs with the reverse function of
django.core.urlresolvers may fail. Use reverse_lazy instead.

How do I avoid Gunicorn excessively blocking in os.fchmod?

The current heartbeat system involves calling os.fchmod on temporary file
handlers and may block a worker for arbitrary time if the directory is on a
disk-backed filesystem. For example, by default /tmp is not mounted as
tmpfs in Ubuntu; in AWS an EBS root instance volume may sometimes hang for
half a minute and during this time Gunicorn workers may completely block in
os.fchmod. os.fchmod may introduce extra delays if the disk gets full.
Also Gunicon may refuse to start if it can’t create the files when the disk is
full.

Currently to avoid these problems you can create a tmpfs mount (for a new
directory or for /tmp) and pass its path to --worker-tmp-dir. First,
check whether your /tmp is disk-backed or RAM-backed:

$ df /tmp
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/xvda1 /

No luck. Let’s create a new tmpfs mount:

sudo cp /etc/fstab /etc/fstab.orig
sudo mkdir /mem
echo 'tmpfs /mem tmpfs defaults,size=64m,mode=1777,noatime,comment=for-gunicorn 0 0' | sudo tee -a /etc/fstab
sudo mount /mem

Check the result:

$ df /mem
Filesystem 1K-blocks Used Available Use% Mounted on
tmpfs 65536 0 65536 0% /mem

Now you can set --worker-tmp-dir /mem.

Community

Use these channels to communicate about the project.

Project Management & Discussions

Gunicorn uses GitHub for the project management [https://github.com/benoitc/gunicorn/projects]. GitHub issues are used
for 3 different purposes:

	Bug tracker [https://github.com/benoitc/gunicorn/projects/2] : to check latest bug

	Forum [https://github.com/benoitc/gunicorn/projects/4] : Stackoverflow-style questions about Gunicorn usage

	Mailing list [https://github.com/benoitc/gunicorn/projects/3] : Discussion of Gunicorn development, new features
and project management.

Project maintenance guidelines are avaible on the wiki [https://github.com/benoitc/gunicorn/wiki/Project-management]
.

IRC

The Gunicorn channel is on the Freenode [http://freenode.net/] IRC
network. You can chat with other on #gunicorn channel [http://webchat.freenode.net/?channels=gunicorn].

Issue Tracking

Bug reports, enhancement requests and tasks generally go in the Github
issue tracker [http://github.com/benoitc/gunicorn/issues].

Security Issues

The security mailing list is a place to report security issues. Only
developers are subscribed to it. To post a message to the list use the address
to security@gunicorn.org .

Changelog

19.9.0 / 2018/07/03

	fix: address a regression that prevented syslog support from working
(issue 1668 [https://github.com/benoitc/gunicorn/issues/1668], pull request 1773 [https://github.com/benoitc/gunicorn/pull/1773])

	fix: correctly set REMOTE_ADDR on versions of Python 3 affected by
Python Issue 30205 [https://bugs.python.org/issue30205]
(issue 1755 [https://github.com/benoitc/gunicorn/issues/1755], pull request 1796 [https://github.com/benoitc/gunicorn/pull/1796])

	fix: show zero response length correctly in access log (pull request 1787 [https://github.com/benoitc/gunicorn/pull/1787])

	fix: prevent raising AttributeError when --reload is not passed
in case of a SyntaxError raised from the WSGI application.
(issue 1805 [https://github.com/benoitc/gunicorn/issues/1805], pull request 1806 [https://github.com/benoitc/gunicorn/pull/1806])

	The internal module gunicorn.workers.async was renamed to gunicorn.workers.base_async
since async is now a reserved word in Python 3.7.
(pull request 1527 [https://github.com/benoitc/gunicorn/pull/1527])

19.8.1 / 2018/04/30

	fix: secure scheme headers when bound to a unix socket
(issue 1766 [https://github.com/benoitc/gunicorn/issues/1766], pull request 1767 [https://github.com/benoitc/gunicorn/pull/1767])

19.8.0 / 2018/04/28

	Eventlet 0.21.0 support (issue 1584 [https://github.com/benoitc/gunicorn/issues/1584])

	Tornado 5 support (issue 1728 [https://github.com/benoitc/gunicorn/issues/1728], pull request 1752 [https://github.com/benoitc/gunicorn/pull/1752])

	support watching additional files with --reload-extra-file
(pull request 1527 [https://github.com/benoitc/gunicorn/pull/1527])

	support configuring logging with a dictionary with --logging-config-dict
(issue 1087 [https://github.com/benoitc/gunicorn/issues/1087], pull request 1110 [https://github.com/benoitc/gunicorn/pull/1110], pull request 1602 [https://github.com/benoitc/gunicorn/pull/1602])

	add support for the --config flag in the GUNICORN_CMD_ARGS environment
variable (issue 1576 [https://github.com/benoitc/gunicorn/issues/1576], pull request 1581 [https://github.com/benoitc/gunicorn/pull/1581])

	disable SO_REUSEPORT by default and add the --reuse-port setting
(issue 1553 [https://github.com/benoitc/gunicorn/issues/1553], issue 1603 [https://github.com/benoitc/gunicorn/issues/1603], pull request 1669 [https://github.com/benoitc/gunicorn/pull/1669])

	fix: installing inotify on MacOS no longer breaks the reloader
(issue 1540 [https://github.com/benoitc/gunicorn/issues/1540], pull request 1541 [https://github.com/benoitc/gunicorn/pull/1541])

	fix: do not throw TypeError when SO_REUSEPORT is not available
(issue 1501 [https://github.com/benoitc/gunicorn/issues/1501], pull request 1491 [https://github.com/benoitc/gunicorn/pull/1491])

	fix: properly decode HTTP paths containing certain non-ASCII characters
(issue 1577 [https://github.com/benoitc/gunicorn/issues/1577], pull request 1578 [https://github.com/benoitc/gunicorn/pull/1578])

	fix: remove whitespace when logging header values under gevent (pull request 1607 [https://github.com/benoitc/gunicorn/pull/1607])

	fix: close unlinked temporary files (issue 1327 [https://github.com/benoitc/gunicorn/issues/1327], pull request 1428 [https://github.com/benoitc/gunicorn/pull/1428])

	fix: parse --umask=0 correctly (issue 1622 [https://github.com/benoitc/gunicorn/issues/1622], pull request 1632 [https://github.com/benoitc/gunicorn/pull/1632])

	fix: allow loading applications using relative file paths
(issue 1349 [https://github.com/benoitc/gunicorn/issues/1349], pull request 1481 [https://github.com/benoitc/gunicorn/pull/1481])

	fix: force blocking mode on the gevent sockets (issue 880 [https://github.com/benoitc/gunicorn/issues/880], pull request 1616 [https://github.com/benoitc/gunicorn/pull/1616])

	fix: preserve leading / in request path (issue 1512 [https://github.com/benoitc/gunicorn/issues/1512], pull request 1511 [https://github.com/benoitc/gunicorn/pull/1511])

	fix: forbid contradictory secure scheme headers

	fix: handle malformed basic authentication headers in access log
(issue 1683 [https://github.com/benoitc/gunicorn/issues/1683], pull request 1684 [https://github.com/benoitc/gunicorn/pull/1684])

	fix: defer handling of USR1 signal to a new greenlet under gevent
(issue 1645 [https://github.com/benoitc/gunicorn/issues/1645], pull request 1651 [https://github.com/benoitc/gunicorn/pull/1651])

	fix: the threaded worker would sometimes close the wrong keep-alive
connection under Python 2 (issue 1698 [https://github.com/benoitc/gunicorn/issues/1698], pull request 1699 [https://github.com/benoitc/gunicorn/pull/1699])

	fix: re-open log files on USR1 signal using handler._open to
support subclasses of FileHandler (issue 1739 [https://github.com/benoitc/gunicorn/issues/1739], pull request 1742 [https://github.com/benoitc/gunicorn/pull/1742])

	deprecation: the gaiohttp worker is deprecated, see the
worker_class documentation for more information
(issue 1338 [https://github.com/benoitc/gunicorn/issues/1338], pull request 1418 [https://github.com/benoitc/gunicorn/pull/1418], pull request 1569 [https://github.com/benoitc/gunicorn/pull/1569])

History

	Changelog - 2017

	Changelog - 2016

	Changelog - 2015

	Changelog - 2014

	Changelog - 2013

	Changelog - 2012

	Changelog - 2011

	Changelog - 2010

Changelog - 2017

Note

Please see Changelog for the latest changes

19.7.1 / 2017/03/21

	fix: continue if SO_REUSEPORT seems to be available but fails (issue 1480 [https://github.com/benoitc/gunicorn/issues/1480])

	fix: support non-decimal values for the umask command line option (issue 1325 [https://github.com/benoitc/gunicorn/issues/1325])

19.7.0 / 2017/03/01

	The previously deprecated gunicorn_django command has been removed.
Use the gunicorn command-line interface instead.

	The previously deprecated django_settings setting has been removed.
Use the raw_env setting instead.

	The default value of ssl_version has been changed from
ssl.PROTOCOL_TLSv1 to ssl.PROTOCOL_SSLv23.

	fix: initialize the group access list when initgroups is set (issue 1297 [https://github.com/benoitc/gunicorn/issues/1297])

	add environment variables to gunicorn access log format (issue 1291 [https://github.com/benoitc/gunicorn/issues/1291])

	add –paste-global-conf option (issue 1304 [https://github.com/benoitc/gunicorn/issues/1304])

	fix: print access logs to STDOUT (issue 1184 [https://github.com/benoitc/gunicorn/issues/1184])

	remove upper limit on max header size config (issue 1313 [https://github.com/benoitc/gunicorn/issues/1313])

	fix: print original exception on AppImportError (issue 1334 [https://github.com/benoitc/gunicorn/issues/1334])

	use SO_REUSEPORT if available (issue 1344 [https://github.com/benoitc/gunicorn/issues/1344])

	fix leak [https://github.com/benoitc/gunicorn/commit/b4c41481e2d5ef127199a4601417a6819053c3fd] of duplicate file descriptor for bound sockets.

	add –reload-engine option, support inotify and other backends (issue 1368 [https://github.com/benoitc/gunicorn/issues/1368], issue 1459 [https://github.com/benoitc/gunicorn/issues/1459])

	fix: reject request with invalid HTTP versions

	add child_exit callback (issue 1394 [https://github.com/benoitc/gunicorn/issues/1394])

	add support for eventlets _AlreadyHandled object (issue 1406 [https://github.com/benoitc/gunicorn/issues/1406])

	format boot tracebacks properly with reloader (issue 1408 [https://github.com/benoitc/gunicorn/issues/1408])

	refactor socket activation and fd inheritance for better support of SystemD (issue 1310 [https://github.com/benoitc/gunicorn/issues/1310])

	fix: o fds are given by default in gunicorn (issue 1423 [https://github.com/benoitc/gunicorn/issues/1423])

	add ability to pass settings to GUNICORN_CMD_ARGS environment variable which helps in container world (issue 1385 [https://github.com/benoitc/gunicorn/issues/1385])

	fix: catch access denied to pid file (issue 1091 [https://github.com/benoitc/gunicorn/issues/1091])

	many additions and improvements to the documentation

Breaking Change

	Python 2.6.0 is the last supported version

Changelog - 2016

Note

Please see Changelog for the latest changes

19.6.0 / 2016/05/21

Core & Logging

	improvement of the binary upgrade behaviour using USR2: remove file locking (issue 1270 [https://github.com/benoitc/gunicorn/issues/1270])

	add the --capture-output setting to capture stdout/stderr tot the log
file (issue 1271 [https://github.com/benoitc/gunicorn/issues/1271])

	Allow disabling sendfile() via the SENDFILE environment variable
(issue 1252 [https://github.com/benoitc/gunicorn/issues/1252])

	fix reload under pycharm (issue 1129 [https://github.com/benoitc/gunicorn/issues/1129])

Workers

	fix: make sure to remove the signal from the worker pipe (issue 1269 [https://github.com/benoitc/gunicorn/issues/1269])

	fix: gthread worker, handle removed socket in the select loop
(issue 1258 [https://github.com/benoitc/gunicorn/issues/1258])

19.5.0 / 2016/05/10

Core

	fix: Ensure response to HEAD request won’t have message body

	fix: lock domain socket and remove on last arbiter exit (issue 1220 [https://github.com/benoitc/gunicorn/issues/1220])

	improvement: use EnvironmentError instead of socket.error (issue 939 [https://github.com/benoitc/gunicorn/issues/939])

	add: new FORWARDED_ALLOW_IPS environment variable (issue 1205 [https://github.com/benoitc/gunicorn/issues/1205])

	fix: infinite recursion when destroying sockets (issue 1219 [https://github.com/benoitc/gunicorn/issues/1219])

	fix: close sockets on shutdown (issue 922 [https://github.com/benoitc/gunicorn/issues/922])

	fix: clean up sys.exc_info calls to drop circular refs (issue 1228 [https://github.com/benoitc/gunicorn/issues/1228])

	fix: do post_worker_init after load_wsgi (issue 1248 [https://github.com/benoitc/gunicorn/issues/1248])

Workers

	fix access logging in gaiohttp worker (issue 1193 [https://github.com/benoitc/gunicorn/issues/1193])

	eventlet: handle QUIT in a new coroutine (issue 1217 [https://github.com/benoitc/gunicorn/issues/1217])

	gevent: remove obsolete exception clauses in run (issue 1218 [https://github.com/benoitc/gunicorn/issues/1218])

	tornado: fix extra “Server” response header (issue 1246 [https://github.com/benoitc/gunicorn/issues/1246])

	fix: unblock the wait loop under python 3.5 in sync worker (issue 1256 [https://github.com/benoitc/gunicorn/issues/1256])

Logging

	fix: log message for listener reloading (issue 1181 [https://github.com/benoitc/gunicorn/issues/1181])

	Let logging module handle traceback printing (issue 1201 [https://github.com/benoitc/gunicorn/issues/1201])

	improvement: Allow configuring logger_class with statsd_host (issue 1188 [https://github.com/benoitc/gunicorn/issues/1188])

	fix: traceback formatting (issue 1235 [https://github.com/benoitc/gunicorn/issues/1235])

	fix: print error logs on stderr and access logs on stdout (issue 1184 [https://github.com/benoitc/gunicorn/issues/1184])

Documentation

	Simplify installation instructions in gunicorn.org (issue 1072 [https://github.com/benoitc/gunicorn/issues/1072])

	Fix URL and default worker type in example_config (issue 1209 [https://github.com/benoitc/gunicorn/issues/1209])

	update django doc url to 1.8 lts (issue 1213 [https://github.com/benoitc/gunicorn/issues/1213])

	fix: miscellaneous wording corrections (issue 1216 [https://github.com/benoitc/gunicorn/issues/1216])

	Add PSF License Agreement of selectors.py to NOTICE (:issue: 1226)

	document LOGGING overriding (issue 1051 [https://github.com/benoitc/gunicorn/issues/1051])

	put a note that error logs are only errors from Gunicorn (issue 1124 [https://github.com/benoitc/gunicorn/issues/1124])

	add a note about the requirements of the threads workers under python 2.x (issue 1200 [https://github.com/benoitc/gunicorn/issues/1200])

	add access_log_format to config example (issue 1251 [https://github.com/benoitc/gunicorn/issues/1251])

Tests

	Use more pytest.raises() in test_http.py

19.4.5 / 2016/01/05

	fix: NameError fileno in gunicorn.http.wsgi (issue 1178 [https://github.com/benoitc/gunicorn/issues/1178])

19.4.4 / 2016/01/04

	fix: check if a fileobject can be used with sendfile(2) (issue 1174 [https://github.com/benoitc/gunicorn/issues/1174])

	doc: be more descriptive in errorlog option (issue 1173 [https://github.com/benoitc/gunicorn/issues/1173])

Changelog - 2015

Note

Please see Changelog for the latest changes.

19.4.3 / 2015/12/30

	fix: don’t check if a file is writable using os.stat with SELINUX (issue 1171 [https://github.com/benoitc/gunicorn/issues/1171])

19.4.2 / 2015/12/29

Core

	improvement: handle HaltServer in manage_workers (issue 1095 [https://github.com/benoitc/gunicorn/issues/1095])

	fix: Do not rely on sendfile sending requested count (issue 1155 [https://github.com/benoitc/gunicorn/issues/1155])

	fix: claridy –no-sendfile default (issue 1156 [https://github.com/benoitc/gunicorn/issues/1156])

	fix: LoggingCatch sendfile failure from no file descriptor (issue 1160 [https://github.com/benoitc/gunicorn/issues/1160])

Logging

	fix: Always send access log to syslog if syslog is on

	fix: check auth before trying to own a file (issue 1157 [https://github.com/benoitc/gunicorn/issues/1157])

Documentation

	fix: Fix Slowloris broken link. (issue 1142 [https://github.com/benoitc/gunicorn/issues/1142])

	Tweak markup in faq.rst

Testing

	fix: gaiohttp test (issue 1164 [https://github.com/benoitc/gunicorn/issues/1164])

19.4.1 / 2015/11/25

	fix tornado worker (issue 1154 [https://github.com/benoitc/gunicorn/issues/1154])

19.4.0 / 2015/11/20

Core

	fix: make sure that a user is able to access to the logs after dropping a
privilege (issue 1116 [https://github.com/benoitc/gunicorn/issues/1116])

	improvement: inherit the Exception class where it needs to be (issue 997 [https://github.com/benoitc/gunicorn/issues/997])

	fix: make sure headers are always encoded as latin1 RFC 2616 (issue 1102 [https://github.com/benoitc/gunicorn/issues/1102])

	improvement: reduce arbiter noise (issue 1078 [https://github.com/benoitc/gunicorn/issues/1078])

	fix: don’t close the unix socket when the worker exit (issue 1088 [https://github.com/benoitc/gunicorn/issues/1088])

	improvement: Make last logged worker count an explicit instance var (issue 1078 [https://github.com/benoitc/gunicorn/issues/1078])

	improvement: prefix config file with its type (issue 836 [https://github.com/benoitc/gunicorn/issues/836])

	improvement: pidfile handing (issue 1042 [https://github.com/benoitc/gunicorn/issues/1042])

	fix: catch OSError as well as ValueError on race condition (issue 1052 [https://github.com/benoitc/gunicorn/issues/1052])

	improve support of ipv6 by backporting urlparse.urlsplit from Python 2.7 to
Python 2.6.

	fix: raise InvalidRequestLine when the line contains malicious data
(issue 1023 [https://github.com/benoitc/gunicorn/issues/1023])

	fix: fix argument to disable sendfile

	fix: add gthread to the list of supported workers (issue 1011 [https://github.com/benoitc/gunicorn/issues/1011])

	improvement: retry socket binding up to five times upon EADDRNOTAVAIL
(issue 1004 [https://github.com/benoitc/gunicorn/issues/1004])

	breaking change: only honor headers that can be encoded in ascii to comply to
the RFC 7230 (See issue 1151 [https://github.com/benoitc/gunicorn/issues/1151]).

Logging

	add new parameters to access log (issue 1132 [https://github.com/benoitc/gunicorn/issues/1132])

	fix: make sure that files handles are correctly reopened on HUP
(issue 627 [https://github.com/benoitc/gunicorn/issues/627])

	include request URL in error message (issue 1071 [https://github.com/benoitc/gunicorn/issues/1071])

	get username in access logs (issue 1069 [https://github.com/benoitc/gunicorn/issues/1069])

	fix statsd logging support on Python 3 (issue 1010 [https://github.com/benoitc/gunicorn/issues/1010])

Testing

	use last version of mock.

	many fixes in Travis CI support

	miscellaneous improvements in tests

Thread worker

	fix: Fix self.nr usage in ThreadedWorker so that auto restart works as
expected (issue 1031 [https://github.com/benoitc/gunicorn/issues/1031])

Gevent worker

	fix quit signal handling (issue 1128 [https://github.com/benoitc/gunicorn/issues/1128])

	add support for Python 3 (issue 1066 [https://github.com/benoitc/gunicorn/issues/1066])

	fix: make graceful shutdown thread-safe (issue 1032 [https://github.com/benoitc/gunicorn/issues/1032])

Tornado worker

	fix ssl options (issue 1146 [https://github.com/benoitc/gunicorn/issues/1146], issue 1135 [https://github.com/benoitc/gunicorn/issues/1135])

	don’t check timeout when stopping gracefully (issue 1106 [https://github.com/benoitc/gunicorn/issues/1106])

AIOHttp worker

	add SSL support (issue 1105 [https://github.com/benoitc/gunicorn/issues/1105])

Documentation

	fix link to proc name setting (issue 1144 [https://github.com/benoitc/gunicorn/issues/1144])

	fix worker class documentation (issue 1141 [https://github.com/benoitc/gunicorn/issues/1141], issue 1104 [https://github.com/benoitc/gunicorn/issues/1104])

	clarify graceful timeout documentation (issue 1137 [https://github.com/benoitc/gunicorn/issues/1137])

	don’t duplicate NGINX config files examples (issue 1050 [https://github.com/benoitc/gunicorn/issues/1050], issue 1048 [https://github.com/benoitc/gunicorn/issues/1048])

	add web.py framework example (issue 1117 [https://github.com/benoitc/gunicorn/issues/1117])

	update Debian/Ubuntu installations instructions (issue 1112 [https://github.com/benoitc/gunicorn/issues/1112])

	clarify pythonpath setting description (issue 1080 [https://github.com/benoitc/gunicorn/issues/1080])

	tweak some example for python3

	clarify sendfile documentation

	miscellaneous typos in source code comments (thanks!)

	clarify why REMOTE_ADD may not be the user’s IP address (issue 1037 [https://github.com/benoitc/gunicorn/issues/1037])

Misc

	fix: reloader should survive SyntaxError (issue 994 [https://github.com/benoitc/gunicorn/issues/994])

	fix: expose the reloader class to the worker.

19.3.0 / 2015/03/06

Core

	fix: issue 978 [https://github.com/benoitc/gunicorn/issues/978] make sure a listener is inheritable

	add check_config class method to workers

	fix: issue 983 [https://github.com/benoitc/gunicorn/issues/983] fix select timeout in sync worker with multiple
connections

	allows workers to access to the reloader. close issue 984 [https://github.com/benoitc/gunicorn/issues/984]

	raise TypeError instead of AssertionError

Logging

	make Logger.loglevel a class attribute

Documentation

	fix: issue 988 [https://github.com/benoitc/gunicorn/issues/988] fix syntax errors in examples/gunicorn_rc

19.2.1 / 2015/02/4

Logging

	expose loglevel in the Logger class

AsyncIO worker (gaiohttp)

	fix issue 977 [https://github.com/benoitc/gunicorn/issues/977] fix initial crash

Documentation

	document security mailing-list in the contributing page.

19.2 / 2015/01/30

Core

	optimize the sync workers when listening on a single interface

	add –sendfile settings to enable/disable sendfile. fix issue 856 [https://github.com/benoitc/gunicorn/issues/856] .

	add the selectors module to the code base. issue 886 [https://github.com/benoitc/gunicorn/issues/886]

	add –max-requests-jitter setting to set the maximum jitter to add to the
max-requests setting.

	fix issue 899 [https://github.com/benoitc/gunicorn/issues/899] propagate proxy_protocol_info to keep-alive requests

	fix issue 863 [https://github.com/benoitc/gunicorn/issues/863] worker timeout: dynamic timeout has been removed

	fix: Avoid world writable file

Logging

	fix issue 941 [https://github.com/benoitc/gunicorn/issues/941] set logconfig default to paster more trivially

	add statsd-prefix config setting: set the prefix to use when emitting statsd
metrics

	issue 832 [https://github.com/benoitc/gunicorn/issues/832] log to console by default

Thread Worker

	fix issue 908 [https://github.com/benoitc/gunicorn/issues/908] make sure the worker can continue to accept requests

Eventlet Worker

	fix issue 867 [https://github.com/benoitc/gunicorn/issues/867] Fix eventlet shutdown to actively shut down the workers.

Documentation

Many improvements and fixes have been done, see the detailed changelog for
more information.

Changelog - 2014

Note

Please see Changelog for the latest changes.

19.1.1 / 2014-08-16

Changes

Core

	fix issue 835 [https://github.com/benoitc/gunicorn/issues/835]: display correct pid of already running instance

	fix pull request 833 [https://github.com/benoitc/gunicorn/pull/833]: fix PyTest class in setup.py.

Logging

	fix issue 838 [https://github.com/benoitc/gunicorn/issues/838]: statsd logger, send statsd timing metrics in milliseconds

	fix issue 839 [https://github.com/benoitc/gunicorn/issues/839]: statsd logger, allows for empty log message while pushing
metrics and restore worker number in DEBUG logs

	fix issue 850 [https://github.com/benoitc/gunicorn/issues/850]: add timezone to logging

	fix issue 853 [https://github.com/benoitc/gunicorn/issues/853]: Respect logger_class setting unless statsd is on

AioHttp worker

	fix issue 830 [https://github.com/benoitc/gunicorn/issues/830] make sure gaiohttp worker is shipped with gunicorn.

19.1 / 2014-07-26

Changes

Core

	fix issue 785 [https://github.com/benoitc/gunicorn/issues/785]: handle binary type address given to a client socket address

	fix graceful shutdown. make sure QUIT and TERMS signals are switched everywhere.

	issue 799 [https://github.com/benoitc/gunicorn/issues/799]: fix support loading config from module

	issue 805 [https://github.com/benoitc/gunicorn/issues/805]: fix check for file-like objects

	fix issue 815 [https://github.com/benoitc/gunicorn/issues/815]: args validation in WSGIApplication.init

	fix issue 787 [https://github.com/benoitc/gunicorn/issues/787]: check if we load a pyc file or not.

Tornado worker

	fix issue 771 [https://github.com/benoitc/gunicorn/issues/771]: support tornado 4.0

	fix issue 783 [https://github.com/benoitc/gunicorn/issues/783]: x_headers error. The x-forwarded-headers option has been removed
in c4873681299212d6082cd9902740eef18c2f14f1 [https://github.com/benoitc/gunicorn/commit/c4873681299212d6082cd9902740eef18c2f14f1].
The discussion is available on pull request 633 [https://github.com/benoitc/gunicorn/pull/633].

AioHttp worker

	fix: fetch all body in input. fix issue 803 [https://github.com/benoitc/gunicorn/issues/803]

	fix: don’t install the worker if python < 3.3

	fix issue 822 [https://github.com/benoitc/gunicorn/issues/822]: Support UNIX sockets in gaiohttp worker

Async worker

	fix issue 790 [https://github.com/benoitc/gunicorn/issues/790]: StopIteration shouldn’t be catched at this level.

Logging

	add statsd logging handler fix issue 748 [https://github.com/benoitc/gunicorn/issues/748]

Paster

	fix issue 809 [https://github.com/benoitc/gunicorn/issues/809]: Set global logging configuration from a Paste config.

Extra

	fix RuntimeError in gunicorn.reloader (issue 807 [https://github.com/benoitc/gunicorn/issues/807])

Documentation

	update faq: put a note on how watch logs in the console [http://docs.gunicorn.org/en/latest/faq.html#why-i-don-t-see-any-logs-in-the-console]
since many people asked for it.

19.0 / 2014-06-12

Gunicorn 19.0 is a major release with new features and fixes. This
version improve a lot the usage of Gunicorn with python 3 by adding two
new workers [http://docs.gunicorn.org/en/latest/design.html#asyncio-workers]
to it: gthread a fully threaded async worker using futures and gaiohttp a
worker using asyncio.

Breaking Changes

Switch QUIT and TERM signals

With this change, when gunicorn receives a QUIT all the workers are
killed immediately and exit and TERM is used for the graceful shutdown.

Note: the old behaviour was based on the NGINX but the new one is more
correct according the following doc:

https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html

also it is complying with the way the signals are sent by heroku:

https://devcenter.heroku.com/articles/python-faq#what-constraints-exist-when-developing-applications-on-heroku

Deprecations

run_gunicorn, gunicorn_django and gunicorn_paster are now
completely deprecated and will be removed in the next release. Use the
gunicorn command instead.

Changes

core

	add aiohttp worker named gaiohttp using asyncio. Full async worker
on python 3.

	fix HTTP-violating excess whitespace in write_error output

	fix: try to log what happened in the worker after a timeout, add a
worker_abort hook on SIGABRT signal.

	fix: save listener socket name in workers so we can handle buffered
keep-alive requests after the listener has closed.

	add on_exit hook called just before exiting gunicorn.

	add support for python 3.4

	fix: do not swallow unexpected errors when reaping

	fix: remove incompatible SSL option with python 2.6

	add new async gthread worker and –threads options allows to set multiple
threads to listen on connection

	deprecate gunicorn_django and gunicorn_paster

	switch QUIT and TERM signal

	reap workers in SIGCHLD handler

	add universal wheel support

	use email.utils.formatdate in gunicorn.util.http_date

	deprecate the –debug option

	fix: log exceptions that occur after response start …

	allows loading of applications from .pyc files (#693)

	fix: issue #691, raw_env config file parsing

	use a dynamic timeout to wait for the optimal time. (Reduce power
usage)

	fix python3 support when notifying the arbiter

	add: honor $WEB_CONCURRENCY environment variable. Useful for heroku
setups.

	add: include tz offset in access log

	add: include access logs in the syslog handler.

	add –reload option for code reloading

	add the capability to load gunicorn.base.Application without the loading of
the arguments of the command line. It allows you to embed gunicorn in
your own application.

	improve: set wsgi.multithread to True for async workers

	fix logging: make sure to redirect wsgi.errors when needed

	add: syslog logging can now be done to a unix socket

	fix logging: don’t try to redirect stdout/stderr to the logfile.

	fix logging: don’t propagate log

	improve logging: file option can be overriden by the gunicorn options
–error-logfile and –access-logfile if they are given.

	fix: don’t override SERVER_* by the Host header

	fix: handle_error

	add more option to configure SSL

	fix: sendfile with SSL

	add: worker_int callback (to react on SIGTERM)

	fix: don’t depend on entry point for internal classes, now absolute
modules path can be given.

	fix: Error messages are now encoded in latin1

	fix: request line length check

	improvement: proxy_allow_ips: Allow proxy protocol if “*” specified

	fix: run worker’s setup method before setting num_workers

	fix: FileWrapper inherit from object now

	fix: Error messages are now encoded in latin1

	fix: don’t spam the console on SIGWINCH.

	fix: logging -don’t stringify T and D logging atoms (#621)

	add support for the latest django version

	deprecate run_gunicorn django option

	fix: sys imported twice

gevent worker

	fix: make sure to stop all listeners

	fix: monkey patching is now done in the worker

	fix: “global name ‘hub’ is not defined”

	fix: reinit hub on old versions of gevent

	support gevent 1.0

	fix: add subprocess in monkey patching

	fix: add support for multiple listener

eventlet worker

	fix: merge duplicate EventletWorker.init_process method (fixes #657)

	fix: missing errno import for eventlet sendfile patch

	fix: add support for multiple listener

tornado worker

	add graceful stop support

Changelog - 2013

18.0 / 2013-08-26

	new: add -e/--env command line argument to pass an environment variables to
gunicorn

	new: add --chdir command line argument to specified directory
before apps loading. - new: add wsgi.file_wrapper support in async workers

	new: add --paste command line argument to set the paster config file

	deprecated: the command gunicorn_django is now deprecated. You should now
run your application with the WSGI interface installed with your project (see
https://docs.djangoproject.com/en/1.4/howto/deployment/wsgi/gunicorn/) for
more infos.

	deprecated: the command gunicorn_paste is deprecated. You now should use
the new --paste argument to set the configuration file of your paster
application.

	fix: Removes unmatched leading quote from the beginning of the default access
log format string

	fix: null timeout

	fix: gevent worker

	fix: don’t reload the paster app when using pserve

	fix: after closing for error do not keep alive the connection

	fix: responses 1xx, 204 and 304 should not force the connection to be closed

17.5 / 2013-07-03

	new: add signals documentation

	new: add post_worker_init hook for workers

	new: try to use gunicorn.conf.py in current folder as the default
config file.

	fix graceful timeout with the Eventlet worker

	fix: don’t raise an error when closing the socket if already closed

	fix: fix –settings parameter for django application and try to find
the django settings when using the gunicorn command.

	fix: give the initial global_conf to paster application

	fix: fix ‘Expect: 100-continue’ support on Python 3

New versionning:

With this release, the versionning of Gunicorn is changing. Gunicorn is
stable since a long time and there is no point to release a “1.0” now.
It should have been done since a long time. 0.17 really meant it was the
17th stable version. From the beginning we have only 2 kind of
releases:

major release: releases with major changes or huge features added
services releases: fixes and minor features added So from now we will
apply the following versionning <major>.<service>. For example 17.5 is a
service release.

0.17.4 / 2013-04-24

	fix unix socket address parsing

0.17.3 / 2013-04-23

	add systemd sockets support

	add python -m gunicorn.app.wsgiapp support

	improve logger class inheritance

	exit when the config file isn’t found

	add the -R option to enable stdio inheritance in daemon mode

	don’t close file descriptors > 3 in daemon mode

	improve STDOUT/STDERR logging

	fix pythonpath option

	fix pidfile creation on Python 3

	fix gevent worker exit

	fix ipv6 detection when the platform isn’t supporting it

0.17.2 / 2013-01-07

	optimize readline

	make imports errors more visible when loading an app or a logging
class

	fix tornado worker: don’t pass ssl options if there are none

	fix PEP3333: accept only bytetrings in the response body

	fix support on CYGWIN platforms

0.17.1 / 2013-01-05

	add syslog facility name setting

	fix --version command line argument

	fix wsgi url_scheme for https

Changelog - 2012

0.17.0 / 2012-12-25

	allows gunicorn to bind to multiple address

	add SSL support

	add syslog support

	add nworkers_changed hook

	add response arg for post_request hook

	parse command line with argparse (replace deprecated optparse)

	fix PWD detection in arbiter

	miscellaneous PEP8 fixes

0.16.1 / 2012-11-19

	Fix packaging

0.16.0 / 2012-11-19

	Added support for Python 3.2 & 3.3

	Expose –pythonpath command to all gunicorn commands

	Honor $PORT environment variable, useful for deployment on heroku

	Removed support for Python 2.5

	Make sure we reopen the logs on the console

	Fix django settings module detection from path

	Reverted timeout for client socket. Fix issue on blocking issues.

	Fixed gevent worker

0.15.0 / 2012-10-18

	new documentation site on http://docs.gunicorn.org

	new website on http://gunicorn.org

	add haproxy PROXY protocol [http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt] support

	add ForwardedAllowIPS option: allows to filter Front-end’s IPs
allowed to handle X-Forwarded-* headers.

	add callable hooks for paster config

	add x-forwarded-proto as secure scheme default (Heroku is using this)

	allows gunicorn to load a pre-compiled application

	support file reopening & reexec for all loggers

	initialize the logging config file with defaults.

	set timeout for client socket (slow client DoS).

	NoMoreData, ChunkMissingTerminator, InvalidChunkSize are now
IOError exceptions

	fix graceful shutdown in gevent

	fix limit request line check

0.14.6 / 2012-07-26

	fix gevent & subproces

	fix request line length check

	fix keepalive = 0

	fix tornado worker

0.14.5 / 2012-06-24

	fix logging during daemonisation

0.14.4 / 2012-06-24

	new –graceful-timeout option

	fix multiple issues with request limit

	more fixes in django settings resolutions

	fix gevent.core import

	fix keepalive=0 in eventlet worker

	fix handle_error display with the unix worker

	fix tornado.wsgi.WSGIApplication calling error

	breaking change: take the control on graceful reload back.
graceful can’t be overrided anymore using the on_reload function.

0.14.3 / 2012-05-15

	improvement: performance of http.body.Body.readline()

	improvement: log HTTP errors in access log like Apache

	improvement: display traceback when the worker fails to boot

	improvement: makes gunicorn work with gevent 1.0

	examples: websocket example now supports hybi13

	fix: reopen log files after initialization

	fix: websockets support

	fix: django1.4 support

	fix: only load the paster application 1 time

0.14.2 / 2012-03-16

	add validate_class validator: allows to use a class or a method to
initialize the app during in-code configuration

	add support for max_requests in tornado worker

	add support for disabling x_forwarded_for_header in tornado worker

	gevent_wsgi is now an alias of gevent_pywsgi

	Fix gevent_pywsgi worker

0.14.1 / 2012-03-02

	fixing source archive, reducing its size

0.14.0 / 2012-02-27

	check if Request line is too large: You can now pass the parameter
--limit-request-line or set the limit_request_line in your
configuration file to set the max size of the request line in bytes.

	limit the number of headers fields and their size. Add
--limit-request-field and limit-request-field-size settings

	add p variable to the log access format to log pidfile

	add {HeaderName}o variable to the logo access format to log the
response header HeaderName

	request header is now logged with the variable {HeaderName}i in the
access log file

	improve error logging

	support logging.configFile

	support django 1.4 in both gunicorn_django & run_gunicorn command

	improve reload in django run_gunicorn command (should just work now)

	allows people to set the X-Forwarded-For header key and disable it by
setting an empty string.

	fix support of Tornado

	many other fixes.

Changelog - 2011

0.13.4 / 2011-09-23

	fix util.closerange function used to prevent leaking fds on python 2.5
(typo)

0.13.3 / 2011-09-19

	refactor gevent worker

	prevent leaking fds on reexec

	fix inverted request_time computation

0.13.2 / 2011-09-17

	Add support for Tornado 2.0 in tornado worker

	Improve access logs: allows customisation of the log format & add
request time

	Logger module is now pluggable

	Improve graceful shutdown in Python versions >= 2.6

	Fix post_request root arity for compatibility

	Fix sendfile support

	Fix Django reloading

0.13.1 / 2011-08-22

	Fix unix socket. log argument was missing.

0.13.0 / 2011-08-22

	Improve logging: allows file-reopening and add access log file
compatible with the apache combined log format [http://httpd.apache.org/docs/2.0/logs.html#combined]

	Add the possibility to set custom SSL headers. X-Forwarded-Protocol
and X-Forwarded-SSL are still the default

	New on_reload hook to customize how gunicorn spawn new workers on
SIGHUP

	Handle projects with relative path in django_gunicorn command

	Preserve path parameters in PATH_INFO

	post_request hook now accepts the environ as argument.

	When stopping the arbiter, close the listener asap.

	Fix Django command run_gunicorn in settings reloading

	Fix Tornado [http://www.tornadoweb.org/] worker exiting

	Fix the use of sendfile in wsgi.file_wrapper

0.12.2 / 2011-05-18

	Add wsgi.file_wrapper optimised for FreeBSD, Linux & MacOSX (use
sendfile if available)

	Fix django run_gunicorn command. Make sure we reload the application
code.

	Fix django localisation

	Compatible with gevent 0.14dev

0.12.1 / 2011-03-23

	Add “on_starting” hook. This hook can be used to set anything before
the arbiter really start

	Support bdist_rpm in setup

	Improve content-length handling (pep 3333)

	Improve Django support

	Fix daemonizing (#142)

	Fix ipv6 handling

Changelog - 2010

0.12.0 / 2010-12-22

	Add support for logging configuration using a ini file.
It uses the standard Python logging’s module Configuration
file format and allows anyone to use his custom file handler

	Add IPV6 support

	Add multidomain application example

	Improve gunicorn_django command when importing settings module
using DJANGO_SETTINGS_MODULE environment variable

	Send appropriate error status on http parsing

	Fix pidfile, set permissions so other user can read
it and use it.

	Fix temporary file leaking

	Fix setpgrp issue, can now be launched via ubuntu upstart

	Set the number of workers to zero on WINCH

0.11.2 / 2010-10-30

	Add SERVER_SOFTWARE to the os.environ

	Add support for django settings environment variable

	Add support for logging configuration in Paster ini-files

	Improve arbiter notification in asynchronous workers

	Display the right error when a worker can’t be used

	Fix Django support

	Fix HUP with Paster applications

	Fix readline in wsgi.input

0.11.1 / 2010-09-02

	Implement max-requests feature to prevent memory leaks.

	Added ‘worker_exit’ server hook.

	Reseed the random number generator after fork().

	Improve Eventlet worker.

	Fix Django command run_gunicorn.

	Fix the default proc name internal setting.

	Workaround to prevent Gevent worker to segfault on MacOSX.

0.11.0 / 2010-08-12

	Improve dramatically performances of Gevent and Eventlet workers

	Optimize HTTP parsing

	Drop Server and Date headers in start_response when provided.

	Fix latency issue in async workers

0.10.1 / 2010-08-06

	Improve gevent’s workers. Add “egg:gunicorn#gevent_wsgi” worker using
gevent.wsgi [http://www.gevent.org/gevent.wsgi.html] and
“egg:gunicorn#gevent_pywsgi” worker using gevent.pywsgi [http://www.gevent.org/gevent.pywsgi.html] .
“egg:gunicorn#gevent” using our own HTTP parser is still here and
is recommended for normal uses. Use the “gevent.wsgi” parser if you
need really fast connections and don’t need streaming, keepalive or ssl.

	Add pre/post request hooks

	Exit more quietly

	Fix gevent dns issue

0.10.0 / 2010-07-08

	New HTTP parser.

	New HUP behaviour. Re-reads the configuration and then reloads all
worker processes without changing the master process id. Helpful for
code reloading and monitoring applications like supervisord and runit.

	Added a preload configuration parameter. By default, application code
is now loaded after a worker forks. This couple with the new HUP
handling can be used for dev servers to do hot code reloading. Using
the preload flag can help a bit in small memory VM’s.

	Allow people to pass command line arguments to WSGI applications. See:
examples/alt_spec.py [http://github.com/benoitc/gunicorn/raw/master/examples/alt_spec.py]

	Added an example gevent reloader configuration:
examples/example_gevent_reloader.py [http://github.com/benoitc/gunicorn/blob/master/examples/example_gevent_reloader.py].

	New gevent worker “egg:gunicorn#gevent2”, working with gevent.wsgi.

	Internal refactoring and various bug fixes.

	New documentation website.

0.9.1 / 2010-05-26

	Support https via X-Forwarded-Protocol or X-Forwarded-Ssl headers

	Fix configuration

	Remove -d options which was used instead of -D for daemon.

	Fix umask in unix socket

0.9.0 / 2010-05-24

	Added when_ready hook. Called just after the server is started

	Added preload setting. Load application code before the worker processes
are forked.

	Refactored Config

	Fix pidfile

	Fix QUIT/HUP in async workers

	Fix reexec

	Documentation improvements

0.8.1 / 2010-04-29

	Fix builtins import in config

	Fix installation with pip

	Fix Tornado WSGI support

	Delay application loading until after processing all configuration

0.8.0 / 2010-04-22

	Refactored Worker management for better async support. Now use the -k option
to set the type of request processing to use

	Added support for Tornado [http://www.tornadoweb.org/]

0.7.2 / 2010-04-15

	Added –spew option to help debugging (installs a system trace hook)

	Some fixes in async arbiters

	Fix a bug in start_response on error

0.7.1 / 2010-04-01

	Fix bug when responses have no body.

0.7.0 / 2010-03-26

	Added support for Eventlet [http://eventlet.net/] and Gevent [http://www.gevent.org/] based workers.

	Added Websockets [https://html.spec.whatwg.org/multipage/web-sockets.html] support

	Fix Chunked Encoding

	Fix SIGWINCH on OpenBSD [https://www.openbsd.org/]

	Fix PEP 333 [https://www.python.org/dev/peps/pep-0333/] compliance for the write callable.

0.6.5 / 2010-03-11

	Fix pidfile handling

	Fix Exception Error

0.6.4 / 2010-03-08

	Use cStringIO for performance when possible.

	Fix worker freeze when a remote connection closes unexpectedly.

0.6.3 / 2010-03-07

	Make HTTP parsing faster.

	Various bug fixes

0.6.2 / 2010-03-01

	Added support for chunked response.

	Added proc_name option to the config file.

	Improved the HTTP parser. It now uses buffers instead of strings to store
temporary data.

	Improved performance when sending responses.

	Workers are now murdered by age (the oldest is killed first).

0.6.1 / 2010-02-24

	Added gunicorn config file support for Django admin command

	Fix gunicorn config file. -c was broken.

	Removed TTIN/TTOU from workers which blocked other signals.

0.6.0 / 2010-02-22

	Added setproctitle support

	Change privilege switch behavior. We now work like NGINX, master keeps the
permissions, new uid/gid permissions are only set for workers.

0.5.1 / 2010-02-22

	Fix umask

	Added Debian packaging

0.5.0 / 2010-02-20

	Added configuration file handler.

	Added support for pre/post fork hooks

	Added support for before_exec hook

	Added support for unix sockets

	Added launch of workers processes under different user/group

	Added umask option

	Added SCRIPT_NAME support

	Better support of some exotic settings for Django projects

	Better support of Paste-compatible applications

	Some refactoring to make the code easier to hack

	Allow multiple keys in request and response headers

Index

 R

R

 	
 	
 RFC

 	RFC 3875

 _static/file.png

_static/plus.png

_static/gunicorn.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Gunicorn - WSGI server

 		
 Installation

 		
 From Source

 		
 Async Workers

 		
 Debian GNU/Linux

 		
 stable (“stretch”)

 		
 oldstable (“jessie”)

 		
 Testing (“buster”) / Unstable (“sid”)

 		
 Ubuntu

 		
 Running Gunicorn

 		
 Commands

 		
 gunicorn

 		
 Integration

 		
 Django

 		
 Paste

 		
 Configuration Overview

 		
 Command Line

 		
 Configuration File

 		
 Framework Settings

 		
 Paster Applications

 		
 Settings

 		
 Config File

 		
 config

 		
 Debugging

 		
 reload

 		
 reload_engine

 		
 reload_extra_files

 		
 spew

 		
 check_config

 		
 Logging

 		
 accesslog

 		
 disable_redirect_access_to_syslog

 		
 access_log_format

 		
 errorlog

 		
 loglevel

 		
 capture_output

 		
 logger_class

 		
 logconfig

 		
 logconfig_dict

 		
 syslog_addr

 		
 syslog

 		
 syslog_prefix

 		
 syslog_facility

 		
 enable_stdio_inheritance

 		
 statsd_host

 		
 statsd_prefix

 		
 Process Naming

 		
 proc_name

 		
 default_proc_name

 		
 SSL

 		
 keyfile

 		
 certfile

 		
 ssl_version

 		
 cert_reqs

 		
 ca_certs

 		
 suppress_ragged_eofs

 		
 do_handshake_on_connect

 		
 ciphers

 		
 Security

 		
 limit_request_line

 		
 limit_request_fields

 		
 limit_request_field_size

 		
 Server Hooks

 		
 on_starting

 		
 on_reload

 		
 when_ready

 		
 pre_fork

 		
 post_fork

 		
 post_worker_init

 		
 worker_int

 		
 worker_abort

 		
 pre_exec

 		
 pre_request

 		
 post_request

 		
 child_exit

 		
 worker_exit

 		
 nworkers_changed

 		
 on_exit

 		
 Server Mechanics

 		
 preload_app

 		
 sendfile

 		
 reuse_port

 		
 chdir

 		
 daemon

 		
 raw_env

 		
 pidfile

 		
 worker_tmp_dir

 		
 user

 		
 group

 		
 umask

 		
 initgroups

 		
 tmp_upload_dir

 		
 secure_scheme_headers

 		
 forwarded_allow_ips

 		
 pythonpath

 		
 paste

 		
 proxy_protocol

 		
 proxy_allow_ips

 		
 raw_paste_global_conf

 		
 strip_header_spaces

 		
 Server Socket

 		
 bind

 		
 backlog

 		
 Worker Processes

 		
 workers

 		
 worker_class

 		
 threads

 		
 worker_connections

 		
 max_requests

 		
 max_requests_jitter

 		
 timeout

 		
 graceful_timeout

 		
 keepalive

 		
 Instrumentation

 		
 Deploying Gunicorn

 		
 Nginx Configuration

 		
 Using Virtualenv

 		
 Monitoring

 		
 Gaffer

 		
 Runit

 		
 Supervisor

 		
 Upstart

 		
 Systemd

 		
 Logging

 		
 Signal Handling

 		
 Master process

 		
 Worker process

 		
 Reload the configuration

 		
 Upgrading to a new binary on the fly

 		
 Custom Application

 		
 Design

 		
 Server Model

 		
 Master

 		
 Sync Workers

 		
 Async Workers

 		
 Tornado Workers

 		
 AsyncIO Workers

 		
 Choosing a Worker Type

 		
 How Many Workers?

 		
 How Many Threads?

 		
 FAQ

 		
 WSGI Bits

 		
 How do I set SCRIPT_NAME?

 		
 Server Stuff

 		
 How do I reload my application in Gunicorn?

 		
 How might I test a proxy configuration?

 		
 How can I name processes?

 		
 Why is there no HTTP Keep-Alive?

 		
 Worker Processes

 		
 How do I know which type of worker to use?

 		
 What types of workers are there?

 		
 How can I figure out the best number of worker processes?

 		
 How can I change the number of workers dynamically?

 		
 Does Gunicorn suffer from the thundering herd problem?

 		
 Why I don’t see any logs in the console?

 		
 Kernel Parameters

 		
 How can I increase the maximum number of file descriptors?

 		
 How can I increase the maximum socket backlog?

 		
 How can I disable the use of sendfile()

 		
 Troubleshooting

 		
 How do I fix Django reporting an ImproperlyConfigured error?

 		
 How do I avoid Gunicorn excessively blocking in os.fchmod?

 		
 Community

 		
 Project Management & Discussions

 		
 IRC

 		
 Issue Tracking

 		
 Security Issues

 		
 Changelog

 		
 19.9.0 / 2018/07/03

 		
 19.8.1 / 2018/04/30

 		
 19.8.0 / 2018/04/28

 		
 History

 		
 Changelog - 2017

 		
 Changelog - 2016

 		
 Changelog - 2015

 		
 Changelog - 2014

 		
 Changelog - 2013

 		
 Changelog - 2012

 		
 Changelog - 2011

 		
 Changelog - 2010

_static/ajax-loader.gif

_images/gunicorn.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

